Buscar este blog

Sugerencias

Mira este sitio en su versión web; los dispositivos móviles ocultan material útil y dificultan la navegación. Utiliza las etiquetas de navegación de la barra lateral; presiona CRTL + F y busca una palabra clave, por ejemplo: "Recetas", o "Argentina" y podrás acceder mas fácilmente a diferentes temas y contenidos


6.3 - Gramos de Lúpulo e IBU

El amargor del lúpulo viene de los alfaácidos, que son insolubles en agua, y que mediante calor y tiempo sufren un proceso de isomerización que los convierte en isoalfaácidos, que sí son solubles, y pasan a nuestro mosto, por eso se hierve el lúpulo: Si no hierve no amarga.
El amargor se mide en IBU (international bittering unit), que equivale a un miligramo de isoalfaácido por litro de cerveza. La mayor parte de los estilos de cerveza estan entre 20 y 40 IBU, a más IBU más amargor.
Una vez hemos decidido los IBU que tendrá nuestra cerveza, hay que hacer una estimación de los litros que quedarán en la olla después del hervido (Lm). Se conoce también la densidad del mosto, el tiempo de hervido y el porcentaje de alfaácidos (%AA) de la variedad (o variedades de lúpulo que vayamos a emplear).
En estas condiciones, se suele hablar de lúpulo de amargor el que se añade a la olla al principio, y que hierve entre hora y hora y media. En el supuesto de que sólo se utilizara esa adición, el cálculo de los gramos necesarios sería muy sencillo:
(1) Gramos de Lúpulo = (IBU x Lm)/(%U x %AA x 10)
Donde el único desconocido es %U, que es el factor de utilización del lúpulo, que depende del tiempo de hervido, de si son pellets o flores y de la densidad del mosto.

Con Tabla de Utilizacion

Decimal Alpha Acid Utilization vs. Boil Time and Wort Original Gravity

Hervir     Densidad Original o inicial
Tiempo  1.030         1.040           1.050          1.060          1.070          1.080          1.090          1.100         1.110           1.120          1.130
(min)
  0          0.000          0.000          0.000          0.000          0.000          0.000          0.000          0.000          0.000          0.000          0.000
  3          0.034          0.031          0.029          0.026          0.024          0.022          0.020          0.018          0.017          0.015          0.014
  6          0.065          0.059          0.054          0.049          0.045          0.041          0.038          0.035          0.032          0.029          0.026
  9          0.092          0.084          0.077          0.070          0.064          0.059          0.054          0.049          0.045          0.041          0.037
 12          0.116          0.106          0.097          0.088          0.081          0.074          0.068          0.062          0.056          0.052          0.047
 15          0.137          0.125          0.114          0.105          0.096          0.087          0.080          0.073          0.067          0.061          0.056
 18          0.156          0.142          0.130          0.119          0.109          0.099          0.091          0.083          0.076          0.069          0.063
 21          0.173          0.158          0.144          0.132          0.120          0.110          0.101          0.092          0.084          0.077          0.070
 24          0.187          0.171          0.157          0.143          0.131          0.120          0.109          0.100          0.091          0.083          0.076
 27          0.201          0.183          0.168          0.153          0.140          0.128          0.117          0.107          0.098          0.089          0.082
 30          0.212          0.194          0.177          0.162          0.148          0.135          0.124          0.113          0.103          0.094          0.086
 33          0.223          0.203          0.186          0.170          0.155          0.142          0.130          0.119          0.108          0.099          0.091
 36          0.232          0.212          0.194          0.177          0.162          0.148          0.135          0.124          0.113          0.103          0.094
 39          0.240          0.219          0.200          0.183          0.167          0.153          0.140          0.128          0.117          0.107          0.098
 42          0.247          0.226          0.206          0.189          0.172          0.158          0.144          0.132          0.120          0.110          0.101
 45          0.253          0.232          0.212          0.194          0.177          0.162          0.148          0.135          0.123          0.113          0.103
 48          0.259          0.237          0.216          0.198          0.181          0.165          0.151          0.138          0.126          0.115          0.105
 51          0.264          0.241          0.221          0.202          0.184          0.169          0.154          0.141          0.129          0.118          0.108
 54          0.269          0.246          0.224          0.205          0.188          0.171          0.157          0.143          0.131          0.120          0.109
 57          0.273          0.249          0.228          0.208          0.190          0.174          0.159          0.145          0.133          0.121          0.111
 60          0.276          0.252          0.231          0.211          0.193          0.176          0.161          0.147          0.135          0.123          0.112
 70          0.285          0.261          0.238          0.218          0.199          0.182          0.166          0.152          0.139          0.127          0.116
 80          0.291          0.266          0.243          0.222          0.203          0.186          0.170          0.155          0.142          0.130          0.119
 90          0.295          0.270          0.247          0.226          0.206          0.188          0.172          0.157          0.144          0.132          0.120
120          0.301          0.275          0.252          0.230          0.210          0.192          0.176          0.161          0.147          0.134          0.123

Calculando %U sin Tabla:
%U =  Factor de Grandeza  * Factor de Ebullicion
%U =  1.65 * 0.000125^(Densidad del Mosto - 1) * ((1 - e^(-0.04 * Tiempo en Minutos))/4.15)
Nota: El Factor de Grandeza se denomina Bigness Factor en los textos.

Si tenemos dos variedades de lúpulo al principio, deberás decidir que porcentaje de amargor aportará cada uno, y aplicando la formula (1) obtendrás cuanto añadir.
Podemos añadir lúpulo en varios momentos, como sabor o aroma, en cuyo caso podemos hacer dos cosas:
  • a) Olvidarnos del amargor que aportan estas adiciones tardías, que suelen ser de menos cantidad, lúpulos con menos amargor y que tienen menos tiempo de isomerizarse.
  • b) Hacer las cosas bien y calcular al pelo, aunque luego ejecutes al medio pelo, claro. Bueno, el             procedimiento es decidir las cantidades y tiempos de las adiciones tardías, y calcular el amargor que suponen con la expresión:
IBU = (Gramos de lúpulo x %U x %AA x 10)/ Lm 
Se suman todos estos IBU y se restan de la cantidad inicial de amargor diseñado, y con la cantidad restante y la primera fórmula calculas la cantidad definitiva de lúpulo de amargor.
Sería algo así como:
  • Quiero una cerveza de 40 IBU
  • Le voy a echar un lúpulo de amargor, otros de sabor que va a hervir 10 minutos y supone 5 IBU, y otro de aroma que supone 2 IBU.
  • Así que necesito 33 IBU del lúpulo de amargor, para lo que necesito tantos gramos de lúpulo, calculados mediante la expresión (1).
Ejemplo Practico Simple

Ahora, supongamos que tenemos una densidad de 1.030, 18 litros de mosto y buscamos 20 Ibu usando lúpulo de 7.5% de Alfa Ácidos. Agregaremos el lúpulo a los 30 minutos (este es un ejemplo básico y sencillo).

Para saber cuantos gramos de lúpulo necesitamos haríamos:
Gramos de lúpulo = (IBU x Lm)/(%U x %AA x 10)
Gramos de lúpulo = (20*18)/(0.212*7.5*10)
Gramos de lúpulo = 22.64
El %U lo obtuvimos de la tabla o bien calculando:
%U =  1.65 * 0.000125^(Densidad del Mosto - 1) * ((1 - e^(-0.04 * Tiempo en Minutos))/4.15)
%U =  (1.65 * 0.000125^(1.030 - 1)  ) * ((1 - e^(-0.04 * 30))/4.15)
%U = 0.21217765312
%U = 0.212
Si, en cambio, pretendemos saber cuantos IBU logramos con una determinada cantidad de gramos (usaremos 22.64 gramos -del calculo anterior-) y el %U para los datos ya mencionados, haremos:
IBU = (Gramos de lúpulo x %U x %AA x 10)/ Lm
IBU = (22.64*0.212*7.5*10)/18
IBU = 19.99
IBU = 20
Esto es la teoría, o más bien la aplicación rigurosa de cómo funciona el tema del amargor en la cerveza. De hecho, las grandes cerveceras emplean ya extracto de lúpulo o incluso extracto de lúpulo isomerizado, que no hace falta ya ni hervirlo, de modo que la cerveza sale virtualmente idéntica cocción tras cocción.




6.2 - Cálculo de IBUs

Como introducción, si no tenemos muy claro lo que es un IBU  podemos explicarlo saltándonos los detalles y decir que es una unidad de medida de amargor. A priori, podríamos decir que una cerveza con 80 IBUs será más amarga que una que sólo tenga 20 IBUs, y digo “a priori” porque la sensación de amargor va a ir compensada por la densidad de la cerveza (que a la postre incidirá en el potencial alcohólico y en el dulzor residual), por lo que la sentencia sería correcta cuando hablamos de cervezas con la misma densidad inicial y final. El índice BU:GU nos va a guiar a la hora de equilibrar nuestras cervezas y conseguir buenos resultados.

Hay una serie de elementos que hay que tener muy presentes si queremos que nuestros lúpulos aporten a la cerveza lo que queremos, y serían:

El contenido de alfa-ácidos del lúpulo o lúpulos en cuestión. Suelen venir en una pegatina identificativa con los lúpulos que compras (si no la lleva, huye de esa tienda), y se expresan en un porcentaje. Se abrevia como %AA. En la foto podemos ver que el lúpulo Herkules (en pellets) tiene un 18% de contenido de alfa-ácidos.


La cantidad de lúpulo que vas a usar (y que trataremos de averiguar en este post). Es de Perogrullo, pero obviamente, a tu cerveza le va a afectar de manera diferente si le echas 10 gramos o 100 gramos de lúpulo. También habrá que tener en cuenta, como ya veremos, si el lúpulo está en flor o si está en pellets, puesto que influirá en los cálculos.

La tasa de aprovechamiento del lúpulo, o, dicho de otra manera, cuántos de esos alfa-ácidos que contiene van a ser “convertidos en amargor”, ya que en función del momento del hervido en el que adicionemos el lúpulo, tendrá un aprovechamiento distinto. Como en inglés esta tasa de aprovechamiento se conoce como “Utilization Rate”, mucha gente habla de ella diciendo “utilización del lúpulo”, lo que queda horrible, pero cada uno es muy libre de decirla como quiera (todavía hay gente en el mundo que dice que una cerveza está “balanceada” en lugar de decir “equilibrada”, que sería lo correcto, pero ese es otro debate). No trates de buscarla en la pegatina identificativa del lúpulo, puesto que no la vas a encontrar. Se trata de cálculos derivados de otros elementos, y que cada investigador ha desarrollado según su criterio. La veremos en detalle un poco más adelante. Utilizaremos la abreviatura “TA” en las fórmulas cuando hablemos de Tasa de Aprovechamiento, aunque en internet podrás encontrar muchas otras fórmulas que a este factor le llaman “U” o “U%”.

El volumen del lote es determinante a la hora de calcular los IBUs. Vuelve a ser obvio que no es lo mismo echar 20 gramos de lúpulo a una olla con 20 litros de mosto, que a otra con 50 litros. Algunas fórmulas tienen muy en cuenta la densidad del lote, otras no tanto y otras lo obvian. La teoría más reciente dice que en los mostos con más densidad, hay más dificultades para aprovechar los alfa-ácidos, por lo que se suele incluir un factor correctivo de acuerdo a este dato.

Los cuatro factores ya nombrados son los principales que vamos a manejar, aunque hay otros que complicarían los cálculos y que también son importantes, pero que por ahora ignoraremos. Un ejemplo sería el estado de conservación del lúpulo y/o su edad. Un lúpulo viejo o mal conservado habrá perdido %AA por puro deterioro y podría ser problemático. Otro ejemplo, la altura sobre el nivel del mar, ya que afecta a la temperatura de ebullición (cuanta más altura, menos temperatura requerida), y eso varía la tasa de aprovechamiento del lúpulo. Tampoco da lo mismo si echas el lúpulo a lo bruto en la olla, que si lo pones en una bolsita de tela o en una bola de acero inoxidable con agujeros, o si está en pellets o en flor (o sin haberse secado, es decir, recogidos directamente de la planta y puestos a hervir)…

Pero el factor más importante a tener en cuenta es que a pesar de todo lo indicado, y aun tratándose de matemáticas, no te obsesiones con decimales ni te lleves las manos a la cabeza por variaciones menores en los cálculos. Si tuvieras que elaborar un lote de 100.000 litros, te convendría ajustar mucho las cantidades para ahorrar costes. A la hora de elaborar el típico lote manejable de 25 litros (o incluso 50), podemos dejar que el rigor científico megalomaniaco se vaya a dar un paseo. Sobre todo, porque incluso la cantidad de %AA que viene en las bolsas y que vas a manejar con el mayor de tus cuidados, siempre es una aproximación.

Los distintos criterios (principales) a la hora de los cálculos

En este mundillo, siempre lo digo, es divertidísimo compartir pareceres porque además de que es perfectamente aplicable el “todo maestrillo tiene su librillo”, hay mil informaciones diferentes y algunas veces contradictorias que van creando corrientes de elaboración diferentes. Con el cálculo de IBUs para algo así. Ha habido diferentes investigadores acerca de este tema que han desarrollado su propio método (fórmula) para realizar el cálculo.

Hay opiniones para todo. Hay quienes se adhieren a un método por ser el más aproximado según la teoría, y hay quienes van a otros más sencillos y manejables obviando elementos importantes. Sea cual sea el método que elijas, también tendrás que ajustarlo a tu equipo y a tus gustos/impresiones en base a la experiencia. La única recomendación es que, sigas el método que sigas, trabaja sobre él y adáptalo a tu equipo con los ajustes que hagan falta.

Partimos de una base clara, que conviene explicar de manera más o menos sencilla. Los alfa-ácidos que están en el lúpulo van a ser los culpables de que a partir de ellos se formen los compuestos que van a aportar amargor a la cerveza. Dichos alfa-ácidos se dividen en tres compuestos específicos: la humulona, la cohumulona y la adhumulona.

Cuando soltamos alegremente el lúpulo en el mosto hirviendo, las altas temperaturas (la creencia más común dice que a partir de los 80 °C) provocan que estos alfa-ácidos sufran un cambio estructural. El cambio en sí mismo, se llama “isomerización”, y da pie a que surjan los compuestos amargos solubles que nos vamos a encontrar en la cerveza final. Cuando un alfa-ácido es isomerizado, tenemos que empezar a hablar de iso-alfa-ácidos. Los químicos, tras un simposio mundial y muchas horas de deliberación (y bastantes heridos en las discusiones que derivaron en violencia), decidieron llamar a estos compuestos iso-humulona, isu-cohumulona e iso-adhumulona.

No todo es tan sencillo, cabe apuntar que el lúpulo también contiene beta-ácidos (también llamados resinas blandas), que al isomerizarse también aportar amargor. Sin embargo, la solubilidad de estos ácidos es tan baja que no merece la pena tenerlos en cuenta a nivel jombrigüer. A menudo se dice que los beta-ácidos tienen entre un tercio y una décima parte de ‘potencial amargante’ que los alfa-ácidos. Sin embargo, cuando el lúpulo envejece, pierde alfa-ácidos y gana beta-ácidos (y por eso es atractivo jugar con lúpulos viejos en algunas ocasiones). Y hay otros elementos ajenos a los alfa-ácidos, como pueden ser productos oxidados durante la recolección y almacenamiento del lúpulo que también aportan amargor y que nadie los mide… ¡qué divertido!

En resumen, es importante saber que la formación de iso-alfa-ácidos durante nuestro hervido va a depender directamente los factores que ya hemos hablado en el párrafo anterior: cantidad de lúpulo que entra en la olla, tasa de aprovechamiento, contenido en alfa-ácidos del lúpulo usado y volumen del lote.

La Tasa de Aprovechamiento (TA), el Factor de Aprovechamiento o “Utilización” (U%)

La manera más rápida de definir la tasa de aprovechamiento del lúpulo (o el “factor de utilización”, como se suele encontrar en la web) es el porcentaje del total de alfa-ácidos que finalmente se convertirán en iso-alfa-ácidos. Es decir, que no el 100% de los %AA que tiene un lúpulo van a quedarse en la cerveza. Además de que se requiere cierto tiempo para que el proceso de isomerización se lleve a cabo, no todos sufren la conversión, y otros que sí la sufren, se pierden en el propio proceso de elaboración.

Dicho esto, podemos deducir que la tasa de aprovechamiento del lúpulo será mayor cuanto más tiempo esté en contacto con el mosto hirviendo. Por eso, dependiendo del momento en que adicionemos los lúpulos tendremos una tasa de aprovechamiento distinta. Y por eso se dice que los lúpulos de amargor se añaden al principio del hervido, y los lúpulos de sabor y aroma en la recta final.

Las “líneas rojas” donde una adición pasa a ser de “amargor” o de “sabor”, o de “sabor” y “aroma” no están claramente definidas, pero se estima que entre el inicio del hervido (minuto 90 o 60, dependiendo, y el minuto 30-25) es una adición puramente de amargor. La explicación a esto es que todos los compuestos aromáticos del lúpulo se destruirán (o se escaparán durante la evaporación) con el tiempo de hervido. Para que el sabor del lúpulo se quede en el mosto, por las cuestiones de que ya no le da tanto tiempo a los alfa-ácidos a isomerizarse y porque los aceites esenciales del lúpulo ya no se van a disipar tanto en el hervor, se habla de un rango que va desde el minuto 30 (siendo el minuto 0 cuando apagamos el fuego) hasta el minuto 10-7, mientras que, si queremos conservar algo de aroma, estimamos entre 10 y 7 minutos de hervor, hasta el minuto 0, que es cuando apagamos el fuego (o resistencia eléctrica) y detenemos el hervido. En definitiva, cuanto más cerca del final del hervido, más aromas y sabores del lúpulo quedarán en el mosto. El gráfico cutre que he puesto (con las cifras de minutos más conservadoras), ilustra este párrafo.


A partir de que apagamos el fuego (minuto 0), y hasta que la cerveza baja de 80 °C, todavía tenemos temperaturas propias de isomerización, por lo que, si tardamos mucho en bajar ese rango al enfriar, podemos conseguir IBUs extra con los que no contábamos en nuestros cálculos. Esto debe ser tenido muy en cuenta si usamos un método de enfriado lento, hacemos “whirpool”, o directamente no enfriamos usando el conocido método “no-chill”, en el que simplemente se tapa el mosto para evitar contaminaciones y se le deja que enfríe pasando el tiempo, incluso hasta 24 horas.

Como todo en esta afición, lo que acabamos de comentar no es tan simple. Hay otros factores que no podemos evaluar y que influyen en el aprovechamiento de los %AA. Por ejemplo, el vigor del hervido afecta al aprovechamiento del lúpulo. Cuanto más vigoroso, habrá más isomerización de alfa-acidos, pero es algo que no puedes medir de otra manera que no sea “a ojo”. Lo suyo es procurar siempre hervidos iguales en potencia para poder acomodar tus recetas a tu equipo. Así, además, podrás prever y controlar la evaporación además del aprovechamiento.

Incluso la levadura que pongas a la hora de fermentar influirá en el aprovechamiento de los %AA. Se ha comprobado que, a mayor cantidad de levadura inoculada en el mosto, menores rangos de IBUs finales se consiguen a causa de una mayor precipitación de iso-alfa-ácidos junto con la levadura. Pero no solo la cantidad de levadura influirá, sino que también la densidad inicial de fermentación, la cantidad de oxígeno, nutrientes y temperaturas de fermentación influirán en los IBUs finales. Sin olvidarnos de agentes clarificantes que además de precipitar las proteínas que provocan turbidez en la cerveza, también arrastrará iso-alfa-ácidos al fondo del fermentador. Incluso la geometría de la olla (es decir, la forma y la capacidad de la misma) o del fermentador también influirán, el pH y la composición del agua harán de las suyas a la hora de percibir el amargor en la cerveza. Así que, por favor, deja la megalomanía en la puerta antes de entrar.

Glenn Tinseth desarrolló un gráfico en el que vemos cómo la curva de aprovechamiento no es lineal y que cae de manera espectacular en la recta final del hervido, lo que reafirma lo que ya sabíamos.


Lo realmente importante es saber y tener claro que la tasa de aprovechamiento no va por escalones, si no que se trata de una curva descendente en función de lo cerca que esté el final del hervido, el gráfico lo deja muy claro.

Sin embargo, podemos decir que precisamente este el “punto conflictivo” entre los diferentes investigadores del tema. Cada uno, basándose en su experiencia, ha declarado unas Tasas de Aprovechamiento diferentes. Algunos son más conservadores, otros más optimistas, otros tienen resultados similares en algún punto del tiempo de hervido, pero se desvían en otros… Por tanto, dependerá de nosotros mismos y nuestra experiencia ajustar los valores que usemos en nuestros cálculos. Aquí podemos ver una tabla comparativa entre diferentes puntos de vista:


Fórmula IBU

Una de las primeras investigaciones para cálculo de IBUs, a nivel jombrigüer, se llevó a cabo en 1990 por Jackie Rager y fue publicada en la revista Zymurgy. Años más tarde, en 1997 Michael L. Hall escribió un artículo sobre este tema en la misma revista muy interesante y que está disponible para consultar libremente en la web de la AHA, donde además compara otras metodologías y profundiza en detalles técnicos.

La mayoría de investigadores se centran en una fórmula de cálculo (más o menos común) cuya principal diferencia la tenemos en el cálculo de la Tasa de Aprovechamiento. Escritores cerveceros como Ray Daniels en Designing Great Beers, Randy Mosher en Radical Brewing o Mark Garetz en Using Hops (que curiosamente tiene los números más conservadores, y que no tiene en cuenta ningún aprovechamiento del lúpulo para los tiempos cortos de hervido) han desarrollado este tema en detalle. Por supuesto, Jack Rager (que fue el primero) debe ser un referente, aunque tiene los valores de aprovechamiento más altos que el resto de investigadores, y Glenn Tinseth y Greg Noonan también tienen su cuota de aportación en este tema.

La ecuación básica para la estimación de IBUs es la siguiente:

fórmula IBUs

En fórmula lineal podemos expresarlo como:

IBU = (Gramos x TA x %AA x 1000) / (Litros x CrD)

Donde:

Gramos es el peso del lúpulo añadido en gramos.

TA (U% en la fórmula original) es el factor de aprovechamiento del lúpulo (del inglés “Utilization”), y se expresa como decimal. Es decir, que un factor de aprovechamiento del 9%, se expresará en la fórmula como 0,09. Este dato se consulta en una tabla específica, pero hay varios criterios para su cálculo, y hablaremos de ello más adelante.

%AA es el contenido de alfa-ácidos del lúpulo, que te lo da el distribuidor y viene siempre en las etiquetas del lúpulo. Se expresa también como decimal (por ejemplo, 16% de alfa-ácido, sería 0,16)

Los litros se refieren al volumen del mosto final, o lo que es lo mismo, lo que irá al fermentador. Se supone que tendrías que conocer tu equipo al dedillo para saber estimar cuánto mosto te quedará en función del volumen hervido y la tasa de evaporación, teniendo en cuenta el vigor de dicho hervido. Pequeñas variaciones en este dato provocarán desvíos en el resultado, así que conviene estudiar las fórmulas antes y después de elaborar, para ir ajustándolas.

CrD quiere decir “Corrector de Densidad”, ya que la isomerización disminuye cuando el mosto es más denso. Hay diferentes interpretaciones a este cálculo, y algunos investigadores ni lo tuvieron en cuenta en su momento. No obstante, merece la pena verlo en detalle.

Corrector de Densidad

Algunas visiones para calcular este corrector son bastantes simples (como, por ejemplo, la de Ray Daniels). Cuando el mosto, antes del hervido, tiene una densidad de 1,050 o menos, dicho factor corrector es 1 (y nunca puede ser menos de 1). Si el mosto tiene más de 1,050 antes del hervido el factor corrector será mayor que 1, de acuerdo a la siguiente fórmula:

CrD = 1 + [(Densidad Hervido – 1,050) / 0,2]

Como ejemplo, si nuestro mosto antes de hervir tuviera una densidad de 1,080, el CrD sería:

CrD = 1 + [(1,080 – 1,050) / 0,2]
CrD = 1 + (0,03 / 0,2)
CrD = 1 + 0,15
CrD = 1,15

Hay otra fórmula más ambiciosa para calcularlo, sobre todo a la hora de estimar la densidad del hervido, que tiene en cuenta el volumen del mosto y su variación por evaporación, y que sería tal que así:

Densidad Hervido = [(DAH – 1) x VF / VI] + 1

Donde:

DAH: Densidad Antes de Hervir
VF: Volumen de litros finales (después de hervir)
VI: Volumen de litros antes de hervir

Por tanto, imaginad que, en el ejemplo anterior, teníamos la DI antes de hervir de 1,080, y que queremos hervir un volumen de 28 litros para quedarnos en 24 (por la evaporación). Por tanto:

Densidad Hervido = [(1,080 – 1] x 24 / 28] + 1
Densidad Hervido = [(0,08 x 24) / 28] + 1
Densidad Hervido = (1,92 / 28) + 1
Densidad Hervido = 0,069 + 1
Densidad Hervido = 1,069

Por tanto, si aplicamos la fórmula anterior, en realidad el factor corrector sería:

CrD = 1 + [(1,069 – 1,050) / 0,2]
CrD = 1 + (0,019 / 0,2)
CrD = 1 + 0,095
CrD = 1,095

Entre un cálculo y otro hay una diferencia de 0,055 que variará en algo (poco) el resultado del cálculo.

Ejemplo de cálculo de IBU aportado en una adición de lúpulo

Vayamos, por fin, a la práctica (o mejor dicho, a la práctica de la teoría). El uso de la afamada fórmula nos puede responder a la sencilla pregunta de “¿cuántos IBUs estoy aportando a mi cerveza?”. Veamos un ejemplo.

Bruno, avezado jombrigüer de Pales Ales sin igual, está elaborando una de sus recetas, donde tiene un mosto de 1,040 antes de hervir, y una única adición de 30 gramos de lúpulo Hungendog con 9% de alfa-ácidos en el minuto 90, para su lote habitual de 24 litros finales. De repente, levanta la vista, se rasca la barbilla y con voz temblorosa replica “¿y cuántos IBUs estoy aportando a mi cerveza, oh, Dios misericordioso?”. Por lo que si Bruno realmente quisiera saberlo tendría que aplicar la mencionada fórmula.


Por tanto, estos serían los resultados según el perfil de Aprovechamiento escogido (hay que consultar la tabla-resumen y buscar el valor de TA correspondiente (ojo, los valores de la tabla son %, por lo que se tienen que expresar en formal decimal, esto es que un valor de 25 se debe expresar en la fórmula como 0,25)

IBU= (30 x ¿TA? x 0,09 x 1000) / (24 x 1) = ¿?

Noonan: IBU= (30 x 0,31 x 0,09 x 1000) / (24 x 1) = 34,88 IBUs = 35 IBUs
Rager: IBU= (30 x 0,30 x 0,09 x 1000) / (24 x 1) = 33,75 IBUs = 34 IBUs
Daniels: IBU= (30 x 0,27 x 0,09 x 1000) / (24 x 1) = 30,38 IBUs = 30 IBUs
Tinseth: IBU= (30 x 0,247 x 0,09 x 1000) / (24 x 1) = 27,79 IBUs = 28 IBUs
Garetz: IBU= (30 x 0,23 x 0,09 x 1000) / (24 x 1) = 25,88 IBUs = 26 IBUs
Mosher: IBU= (30 x 0,208 x 0,09 x 1000) / (24 x 1) = 23,40 IBUs = 23 IBUs

Como se ve claramente, hay una diferencia bastante grande entre la estimación de Mosher, la más conservadora con 23,40 IBUs y la de Noonan, más optimista, de 34,88 IBUs. Hablamos de 11,48 IBUs entre uno y otro. El ser humano no puede distinguir entre (por ejemplo) 35 y 36 IBUs, sino que se cree que nota las escalas de IBU de 5 en 5. Es decir, que sí notaría la diferencia entre 31 y 36 IBUs.

Por tanto, hay que poner en práctica estos cálculos y saber cómo afectan a tu cerveza para ir ajustando tus formulaciones según tus experiencias.

Cálculo de la cantidad necesaria de lúpulo

A pesar de todo lo dicho, el cálculo realmente útil se hace a la hora de diseñar la receta de la cerveza. Es decir, días antes de la elaboración, cuando te planteas el estilo de cerveza a elaborar y los lúpulos que vas a utilizar (o los que tienes disponibles).

De forma natural y por regla general, primero decides el estilo de cerveza a elaborar. Para hacerlo de manera práctica, veamos un ejemplo, y pongamos que queremos hacer una Ordinary Bitter. Sabemos que tenemos que estimar una D.I. de 1,030 – 1,039 según la BJCP (a la que podremos hacer caso o no, ese no es el debate que hoy nos ocupa), y nosotros apuntaremos a 1,039. El rango de IBUs para este estilo es de 25 a 35. Deseamos una cerveza que el lúpulo tenga presencia, pero sin ser el protagonista total, por lo que apoyándonos en lo que sabemos del índice BU:GU decidimos que 25 IBUs estará muy bien para esa densidad, ya que en el gráfico está en el límite de “cerveza poco lupulizada” y “muy lupulizada”, y cuyo índice BU:GU (25/39 = 0,64) nos da un equilibrio apreciable. Como sólo disponemos en el congelador 4 kilos de lúpulo Hungendog (procedentes de la última compra conjunta) con un contenido de alfa-ácidos del 8%, la pregunta es sencilla. Si mi lote habitual es de 22 litros finales, ¿cuántos gramos de lúpulo Hungendog con 8 %AA tengo que poner en el minuto 90 de hervido para alcanzar mis 25 IBUs deseados?

Para averiguarlo, no hay más que darle la vuelta a la fórmula establecida, usando lo que hemos aprendido en la EGB para la resolución de ecuaciones (o directamente, usando la que te pongo aquí mismo):


De forma lineal podemos expresarla como:

Gramos = (Litros x CrD x IBU) / (TA x %AA x 1000)

Y en nuestro ejemplo, sería:

Gramos = (22 x 1 x 25) / (¿TA? x 0,08 x 1000) = ¿?

Por lo tanto, según el perfil de Aprovechamiento que escojamos, tendríamos que añadir estos gramos:

Noonan: Gramos = (22 x 1 x 25) / (0,31 x 0,08 x 1000) = 22,18 g. = 22 gramos
Rager: Gramos = (22 x 1 x 25) / (0,30 x 0,08 x 1000) = 22,92 g. = 23 gramos
Daniels: Gramos = (22 x 1 x 25) / (0,27 x 0,08 x 1000) = 25,46 g. = 25 gramos
Tinseth: Gramos = (22 x 1 x 25) / (0,247 x 0,08 x 1000) = 27,83 g. = 28 gramos
Garetz: Gramos = (22 x 1 x 25) / (0,23 x 0,08 x 1000) = 29,89 g. = 30 gramos
Mosher: Gramos = (22 x 1 x 25) / (0,208 x 0,08 x 1000) = 33,05 g = 33 gramos

Obviamente, en la práctica redondearíamos gramo arriba, gramo abajo. No obstante, hay una diferencia de unos 11 gramos entre un planteamiento y otro. Por tanto, seguimos diciendo que conviene hacer cálculos y ver los resultados para saber por dónde nos movemos.

¿Complicando el asunto? Adiciones de sabor y aroma

Todo esto está fenomenal, pero habitualmente las cervezas que nos gustan elaborar tienen más de una adición de lúpulo. Y como ya hemos explicado al principio del post, suelen determinarse para aportar aroma y sabor.

Es bastante más simple de lo que parece. En serio. Realmente, hay que tener en cuenta que las aportaciones para aroma y para sabor son las que menos amargor aportan, habida cuenta de su poco aprovechamiento. Por tanto, la cantidad de gramos para estas adiciones se estiman en proporción al lote. Por ejemplo, una regla sencilla por dónde empezar tu carrera de diseño de recetas es empezar por 1 gramo/litro final de cerveza. Es decir, por ejemplo, si tu lote es de 24 litros, poner 24 gramos de lúpulo a los últimos 5 minutos (para aroma) y 24 gramos de lúpulo a los últimos 15 minutos (para sabor). Cuando sepas cómo afecta esto a tu cerveza, podrás ir ajustando hacia arriba o hacia abajo, o jugar con los tiempos de adición. Ojo también porque hay lúpulos más aromáticos que otros y habrá que ajustar las cuotas.

Una vez hayas establecido la cantidad de lúpulo añadido en sabor y aroma, tan sólo tienes que calcular cuántos IBUs aporta cada una de esas adiciones con la fórmula que hemos visto. Luego, restar esos IBUs de la cantidad de IBUs totales a aportar a la cerveza, y mediante la otra fórmula que ya conocemos para calcular la cantidad necesaria de lúpulo, hacer el ajuste de amargor.

Por si no ha quedado claro, veamos un ejemplo práctico más:

Para no complicarnos con los diferentes planteamientos, escogeremos el de Ray Daniels (que personalmente es el que yo uso, con buenos resultados) para este ejemplo. Pongamos que queremos hacer la receta-clon de una Rogue Chocolate Stout Clone que podemos encontrar aquí y que nos da la siguiente información:

28 g de Cascade (pellet) con 5 %AA a los 90 min.
28 g de Cascade (pellet) con 5 %AA a los 30 min.
28 g de Cascade (pellet) con 5 %AA a los 0 min.

Además, nos dice apuntar a una densidad inicial de 1,069 y buscar los 30 IBU. Veamos entonces cómo podemos reinterpretar esta receta.

Para empezar, hemos comprado Cascade y solo hemos podido encontrar en flor, con un %AA de 6,4, por lo que no empezamos muy bien. Además, la receta estima esas cantidades de lúpulo para un lote de 19 litros, pero yo elaboro 25. Seguimos mal. ¡¡Pero no pasa nada, porque ya sabemos cómo actuar!!

Lo primero es calcular cuántos IBUs nos van a aportar las adiciones de aroma y sabor. Si en la receta que queremos adaptar usan 28 gramos para un lote de 19 litros, sabemos que están usando 28/19= 1,47 g/l, así que ya sabemos por dónde empezar. Como nuestro lote será de 25 litros, usaremos 1,47 x 25 = 37 gramos de lúpulo.

Se da la circunstancia de que tenemos una DI por encima de 1,050 por lo que hay que aplicar el corrector (CrD). Sabemos (porque conocemos nuestro equipo y nuestra evaporación) que al hervir 90 minutos se nos evaporan unos 7 litros, por lo que tenemos que empezar con 32 litros en la olla, a una densidad antes de hervir de 1,054, por lo que aplicando la fórmula:

CrD = 1 + [(Densidad Hervido – 1,050) / 0,2]
CrD = 1 + [(1,054 – 1,050) / 0,2]
CrD = 1 + (0,004 / 0,2)
CrD = 1 + 0,2
CrD = 1,2

IBUS que aporta la adición de 37 gramos de lúpulo Cascade flor con 6,4 %AA en el minuto 0 (según Daniels):

IBUs= (37 gramos x 0,05 x 0,064 x 1000) / (25 x 1,2) = 3,94 IBU (4 IBU)

Y seguimos con la segunda adición: IBUS que aporta la adición de 37 gramos de lúpulo Cascade flor con 6,4 %AA en el minuto 30 (según Daniels):

IBUs= (37 gramos x 0,19 x 0,064 x 1000) / (25 x 1,2) = 14,99 IBU (15 IBU)

Ya hemos averiguado que las dos adiciones finales nos aportan un total de 4 + 15 = 19 IBUs. Como la receta apunta a 30 IBU, tenemos que calcular cuántos gramos de nuestro lúpulo tenemos que poner en la olla en el minuto 90, pero para aportar 30 – 19 = 11 IBUs.

Así que, aplicando la otra fórmula, tenemos que:

Gramos = (25 x 1,2 x 11) / (0,27 x 0,064 x 1000) = 19 gramos

Ya tenemos algo por donde elaborar nuestro primer lote de este clon, evaluar los resultados e ir ajustando la receta hasta darle el toque definitivo, pero con resultados aceptables desde el principio.

Ray Daniels (quien me conoce o lee asiduamente este blog, ya sabe lo mucho que me gusta su libro “Designing Great Beers”) le dedica el capítulo 9 a esta temática, y emplea varias páginas a la adaptación de los cálculos de los factores de aprovechamiento a tu equipo y procesos, por lo que, si eres muy friki, puedes investigarlo para tener unos cálculos más ajustados (aunque no es el único, hay muchas publicaciones en internet sobre el tema). También juega con otros pormenores muy interesantes, como, por ejemplo, quienes hierven una cantidad determinada de cerveza, pero luego la diluyen con agua en el fermentador, cómo tener en cuenta este hecho para acertar con los IBUs, o el cálculo de degradación de los alfa-ácidos en los lúpulos de acuerdo a su edad, variedad, y temperatura de conservación.

Consideraciones finales

Algunos jombrigüeres son muy aficionados a poner el lúpulo tan pronto el mosto está saliendo del macerador. A esta técnica se la conoce como “First Wort Hopping” o FWH, y se cree que tiene efectos positivos en el aroma del lúpulo, así como que proporciona un amargor más redondo e integrado. Si quieres tener en cuenta el aporte de amargor de estos lúpulos, muchos softwares cerveceros lo estiman en un 10% superior al punto de empezar el hervido.

Otros cerveceros ponen el lúpulo directamente en el macerado, con la creencia de que esto potencia el aroma del lúpulo. Sin embargo, la tasa de aprovechamiento del amargor es mucho menor, y se suele estimar en un 20% del valor de aprovechamiento del tiempo de hervido equivalente (es decir, la duración del macerado).

Cabe destacar que, para lotes más grandes de 100 litros, las tasas de aprovechamiento del lúpulo se disparan, y muchas microcervecerías consiguen valores de aprovechamiento de un 300% con respecto a un jombrigüer y su lote casero de 20 litros. Conviene, como siempre, ajustar los valores a tu equipo concreto.

El deterioro del lúpulo tampoco es el mismo para todas las variedades, ya que algunas soportan mejor el almacenamiento que otras. Sin embargo, las estimaciones caseras para este factor son del 50% de alfa-ácidos si el lúpulo tiene un año y no ha sido conservado en frío, y 25% si sí ha estado conservado en frío. Como aproximación, puedes volver a hacer el mismo cálculo para el siguiente año (y posteriores), pero obviamente siempre serán estimaciones.

Los pellets se disuelven prácticamente por completo cuando se añaden al hervido, haciendo que los alfa-ácidos estén más disponibles y se isomericen más fácilmente. La diferencia entre la tasa de aprovechamiento de lúpulos en flor y en pellets suele cuantificarse en un 10% (es más potente el pellet que la flor), sin embargo, dependiendo de la fuente consultada, puede aumentar hasta un 15-25%. Tendrás que ajustar la tasa de aprovechamiento con el porcentaje que estimes ajustado a tu equipo (de entre un 10 a un 25%).

En los trasiegos, perderás IBUs, si quitas mucho turbio antes de la fermentación, perderás IBUs. Si filtras, perderás IBUs. Si usas agentes clarificantes, perderás IBUs.

Sobre usar lúpulo fresco (fresh hopping), o lo que es lo mismo, coger lúpulo de la planta y echarlo a la olla de cocción, hay bastantes visiones de cuánto echar y cómo afecta esto a los IBUs. En primer lugar, lo más recomendable es usarlos sólo para aroma, puesto que el lúpulo tiene la manía de crecer en la planta sin la etiqueta que te dice cuántos alfa-ácidos contiene. En el caso de que hagas una estimación de los %AA haciendo una media con los rangos habituales de la variedad en concreto (y aciertes), diferentes publicaciones de internet te dicen de echar entre 5 y 8 veces la cantidad necesaria. Una vez me contaron que el lúpulo seco tiene un 8% de agua, mientras que el resto (92%) es materia sólida. La flor fresca se estima que es un 80% agua y un 20% materia sólida. Si divides 92 / 20 te sale que necesitas 4,6 veces más de flores frescas que secas para una misma aportación de materia sólida. Con estas estimaciones, si tienes en cuenta (y sabes la manera de calcular o estimar el contenido de agua de tu flor), puedes variar la cuota a adicionar.






6.1 - El IBU

IBU, como a esta altura ya te estarás imaginando, es una sigla que significa International Bitterness Unit (Unidad Internacional de amargor)
Nuestro IBU es un número que denota el tenor amargo característico de la cerveza. Cuanto mayor sean las IBU más amarga será la cerveza. El responsable de este característico amargo de nuestra bebida el el lúpulo que además de tenor amargo puede entregar sabores y aromas.
El nivel de tenor amargo de la cerveza se mide a partir de unas complicadas cuentas que no te interesa conocer, donde participan los datos del tipo de lúpulo que se utiliza, tiempo de cocción y modo de aplicación.
Un IBU equivale a un miligramo de iso-a-ácidos por litro de cerveza.
Para tener una referencia, a paladar, una cerveza Budweiser anda por los 10-12 IBU; Quilmes entre los 12-15 IBU, Warsteiner en los 18-20 IBU, las IPAs van de 40 a 60 IBU, una Barley Wine entre 70 y 100 IBU.
Vale aclarar que una cerveza que lleve 100 IBU, 10 veces lo que tiene una comercial suave, no significa que "lije" al tragar. Existe una regla de balance que dice que hay que dividir la unidades de IBU sobre la densidad original DO (densidad original,  es la cantidad de extracto -cantidad de sólidos, como azúcares, fermentables o no fermentables que se le extrajeron a los granos de malta al macerar, disueltos en 100ml-que tenía mosto del cual deriva la cerveza que se esta tomando). Si el resultado es cercano a 0 (cero) será una cerveza maltosa. Si es cercano o superior a 1 será una cerveza amarga.
Esto quiere decir que se genera un balance entre los IBU y caracteres dulces, de gran cuerpo o sabores fuertes que harán una cerveza intensa pero no necesariamente amarga en extremo.

Estos son los distintos niveles de IBU segun cada estilo de cerveza, en un muy buen gráfico de BrewersFriend.






6 - Hervido y Lupulado

El hervido se realiza para:
  • Solubilizar las sustancias que brindan el amargor del lúpulo.
  • Evaporar el exceso de agua
  • Inactivar las enzimas
  • Esterilizar el mosto
  • Remover el exceso de proteínas
El tiempo de hervido varía entre 60 y 90 minutos. El mismo debe ser vigoroso.
Durante el hervido se realiza el lupulado, que se recomienda hacerlo en 3 etapas.
  • El 80 % al comienzo del hervor (lúpulo de amargor), 
  • 15% (lúpulo sabor) a los 45 minutos y 
  • 5% (lúpulo aromático) al final del hervido (2 minutos antes de finalizar).
Si el hervor dura 60 minutos se deben hacer los siguientes pasos
  • Minuto 0 de romper hervor colocar lúpulo de Amargor
  • Minuto 45 de romper hervor colocar lúpulo de sabor
  • Minuto 50 de romper hervor colocar clarificante de hervido
  • Minuto 55 de romper hervor colocar lúpulo de aroma
  • Whilpool
Una vez finalizado el hervido para coagular mejor las proteínas y taninos y enviar al fermentador el mosto más claro es necesario realizar el whilpool, consiste en mover la maza del mosto en forma circular y de esta manera la fuerza centrífuga asienta en el fondo y centro los turbios caliente.
  • Realizar el whilpool 1 minuto con la cuchara, luego apagar y dejar otros 15 minutos decantar.





5 - Filtrado y Lavado del Grano

Una vez que se termino el macerado, se debe comenzar con el filtrado. Este primer filtrado se realiza con la misma cascara de malta que queda en el macerador.
Se comienza con el recirculado hasta que se forma el manto filtrante y luego cuando ya se observa el mosto limpio de granos se comienza a llenar la olla de hervido. Se puede hacer con bomba o manualmente con una jarrita. Recircular unos minutos hasta que el mosto se vea limpio y brillante.
Al volver el líquido hacerlo suavemente para no romper el manto.

Los granos absorben agua en la siguiente proporción:
  • 3.5 litros cada 2.5 kg de granos.
Por esta razón se deben lavar los granos (Sparging) con agua caliente mayor a 70ºC, para sacar el azúcar que les queda, compensar estas pérdidas y alcanzar la gravedad original deseada.
Cuando terminamos el recirculado, sacamos el mosto hacia el hervidor y simultáneamente que comenzó el filtrado a medida que va saliendo el mosto del macerador se va haciendo ingresar agua caliente (70/80ºC) por un elemento tal que rocíe suavemente el agua sobre el macerador para que no se rompa el manto filtrante formado (Rotate sparging).
En esta etapa completamos con el agua hasta que tengamos en el hervidor el volumen de hervido y la densidad deseada.
Se debe compensar el enfriamiento 5% de dilatación y la evaporación entre 10 y 15 %. Por lo tanto si mi receta es de 20 litros debo lavar hasta 23 a 24 litros.
Una vez completado el lavado y el trasvase mezclar bien antes de tomar densidad.





4.11 - La maceración y su influencia en la extracción de azúcares para una fermentación ideal

La conversión de azúcares comienza en el proceso de malteado. Durante la germinación de los granos se producen las enzimas que participarán en el proceso de conversión del almidón de la malta en azúcares fermentables y no fermentables.
Cuando estos granos son horneados para su tostión – o básicamente para remover la humedad agregada durante su germinación, varias de estas enzimas mueren. Es por eso que un buen proceso de malteado influenciará positivamente en la extracción de azúcares fermentables.
Los granos malteados y no malteados poseen reservas de almidón contenidas en una especie de empaque compuesto por protenias y carbohidratos, lo cual evita que las enzimas tengan acceso a estas.
Cuando se hidrata la malta sus almidones comienzan a gelatinizarse en una combinación de calor y acción enzimática. El rango de temperatura promedio de gelatinización de la cebada es de 60ºC a 65ºC, pero también puede ocurrir entre los 55ºC y 67ºC dependiendo de la variedad de cebada y condiciones de la cosecha.
Otros granos no malteados como el maíz, arroz, o trigo, se gelatinizan a diferentes temperaturas que la cebada, y es necesario cocinarlos previamente a la maceración con la cebada, aunque la precentación en hojuelas ya está debidamente cocinada y es por eso que se maceran con la malta.
Luego de la gelatinización, la enzima alfa-amilasa comienza a quebrar las cadenas largas de almidones en pequeñas cadenas de 6-8 unidades de glucosa, llamadas dextrinas, las cuales son fácilmente procesadas por las otras enzimas beta-amilasa, alfa-glucosidasa, y dextrinasa límite para la conversión de azúcares.
Estas largas cadenas de glucosa no son fermentables si se utiliza las levaduras saccharomyces, y terminan agregando cuerpo a la cerveza. Sin embargo, estas cadenas pueden ser procesadas por levaduras brettanomyces o bacterias como lactobacillus y pediococcus.
La enzima beta-amilasa se encarga de quebrar cadenas de glucosa en cadenas más pequeñas de 2 unidades de glucosa, denominadas maltosa.
Este tipo de azúcar es fermentable, así que un mosto compuesto principalmente por estos azúcares será altamente fermentable y resultará en una cerveza seca.
La enzima dextrinasa límite también quiebra almidones en cadenas más pequeñas, ayudando a la beta-amilasa a hacer un mejor trabajo, pero al igual que la alfa-amilasa, no genera maltosa.
Las enzimas son principalmente influenciadas durante la maceración por diferentes temperaturas, aunque el pH también influye un poco.
La alfa-amilasa por ejemplo, es resistente al calor y muy estable, y es capaz de trabajar a temperaturas hasta de 71ºC.
La beta-amilasa es inestable, y durante la maceración es gradualmente destruida por el calor. Esta enzima trabaja muy bien a la temperatura de 65ºC, pero muere a la temperatura de 68ºC.
La dextrinasa límite usualmente trabaja en pH bajos de 5.1-5.2, pero se inhibe en pH más altos. Por ende, al controlar el pH se puede promover esta enzima, la cual facilita el trabajo de la beta-amilasa para producir un mosto más fermentable.
Si se miran estas enzimas trabajando en conjunto, se puede deducir que al macerar a temperaturas cercanas a los 65ºC, con pH de 5.1-5.2, se va a producir un mosto bastante fermentable y una cerveza más seca, reflejada en una densidad final baja.
Al subir la temperatura de maceración, la beta-amilasa se degrada y muere eventualmente, produciendo así menos maltosa, y dejando más dextrinas en el mosto que aportan cuerpo a la cerveza – conllevando a una densidad final más alta, obviamente asumiendo que no se va a acidificar con brettanomyces o bacterias, ya que estos microbios pueden procesar dextrinas.
De todas maneras, según el Dr. Charlie Bamforth, profesor de Brewing Science de la Universidad de California, no importa qué tanto esfuerzo hagamos para controlar las variables y obtener un mosto fermentable, sólo llegaremos a un 80% de fermentabilidad.






4.10 - Ph y Amilasas en la Maceracion

La maceración es el proceso mediante el cual se estimula la acción de las enzimas del grano para transformar sus reservas de energías y compuestos en azucares simples como maltosa y otros elementos necesarios. Esto se hace mezclando el agua con el grano molido a una cierta temperatura especifica para cada enzima que se desee estimular.
Estos procesos se verán influenciados por factores como pH, temperatura y tiempo. El control de estos factores dará a la cerveza ciertos atributos tales como: aroma, sabor, cuerpo, color, etc.
Las temperaturas de maceración desempeñan un papel muy importante en la determinación del cuerpo, la fermentabilidad y el desarrollo del perfil de aroma y sabor de la cerveza. Dependiendo del estilo de la cerveza elaborada, una temperatura diferente de la maceración o una combinación de temperaturas dará como resultado un perfil especifico a la cerveza.
  • A menor temperatura la fermentabilidad de tu cerveza será más alta y obtendrás más azúcares fermentables para tu levadura.
  • A mayor temperatura tu fermentabilidad será baja obteniendo una cerveza con más cuerpo ya que tendrás más azúcares no fermentables que permanecerán en tu cerveza.
Las enzimas son proteínas que se encuentran prácticamente en todas partes y sirven como catalizadores, es decir, hacen que las reacciones ocurran rápidamente. Cada reacción bioquímica es catalizada por una enzima muy específica. Debes saber que la enzima es frágil y puede dañarse por una multitud de factores, como la temperatura. Si se daña ya no pueda actuar como un catalizador. Esto se llama desnaturalización de la enzima, y una vez que se ha dañado, es irreversible.
Ahora, para los cerveceros, nos preocupa la actividad de dos enzimas primarias en la cerveza: la alfa-amilasa y la beta-amilasa.
La alfa-amilasa descompone moléculas de almidón insolubles, grandes y complejas en moléculas más pequeñas y solubles para la beta-amilasa Así también produce dextrinas o azúcares no fermentables que son las que dan la sensación de cuerpo o filling a la cerveza. Rango de temperatura de 60°C a 75°C.
La beta-amilasa es la otra enzima capaz de descomponer los almidones y crear azúcares solubles. Después de que las enzimas alfa-amilasa crean moléculas solubles más pequeñas, las enzimas beta-amilasa crean la mayoría de los azúcares fermentables al descomponer el almidón para crear maltosa y glucosa. Estas enzimas ayudan a crear cuerpos más ligeros y más alcohol y son más activas desde 55°C – 65°C.
Cada enzima tiene una temperatura óptima, la temperatura a la cual la enzima es más activa. Una vez que la temperatura está por debajo o por encima del rango de temperatura, se afecta la productividad de esa enzima.
La temperatura que elijas en tu maceración afectará directamente a tu cerveza final haciéndola más alcohólica y ligera o haciéndola mas robusta o con más cuerpo.
Las enzimas presentes en mayor cantidad en el grano son:

  • Fitasa:
        Ph: 5 - 5.5
        Temperatura: 30-52ºC
        Función: Disminuir el ph del macerado. Ya no es utilizada
  • Beta Glucana:
        Ph: 4.5 - 5.5
        Temperatura: 35-45ºC
        Función: Mejor enzima para romper la gelatinización.
  • Peptidasa:
        Ph: 4.6 - 5.3
        Temperatura: 45-56ºC
        Función: Produce FAN (Free Amino Nitrogen), elemento muy importante asegurar una buena fermentación.
  • Proteasa:
        Ph: 4.6 - 5.3
        Temperatura: 45-56ºC
        Función: Rompe grandes moléculas de proteínas que podrían enturbiar nuestra cerveza.
  • Beta Amilasa:
        Ph: 5 - 5.5
        Temperatura: 56-66ºC
        Función: Produce Maltosa.
  • Alfa Amilasa:
        Ph: 5.3 - 5.7
        Temperatura: 68-73ºC
        Función: Produce una variedad de azucares, incluyendo maltosa.

Como cerveceros artesanales deseamos obtener la mayor cantidad de maltosa, por lo tanto debemos generar en la mezcla las condiciones óptimas para su producción. Por lo tanto, nuestro ph se mantendrá dentro del rango entre 5 y 5.5, y la temperatura dependerá de cual tipo de maceración utilicemos. Por hoy solo hablaremos del método mas simple de maceración que es el de infusión simple, puesto que para nosotros, cerveceros caseros, es la manera más sencilla para elaborar cerveza permite generar una enorme variedad de estilos y obtener excelentes resultados.
Para la infusión simple apuntaremos a una temperatura entre 65-69.5ºC, distinguiendo a su vez en este rango 3 sub-divisiones que cambiaran el cuerpo de nuestra cerveza, entre 65-66.5ºC se generarán mas azucares fermentables resultando en una cerveza de cuerpo mas liviano y con menos dulzor. El siguiente rango 66.5-68ºC darán por resultado una cerveza de cuerpo medio. Por último una cerveza macerada entre 68-69.5ºC tendrá un cuerpo mas pesado, o grueso y será mas dulce ya que en la maceración se generará mas azucares pesados no fermentables. El tiempo que se utiliza para asegurarnos de una óptima transformación de los azucares será de 90 min, efectivamente podriamos realizarlo en menos tiempo pero necesitaríamos un test de yodo, para verificar si la transformación está completa.
Como ph ideal, como mencionábamos anteriormente, se apunta entre 5 y 5.5. Aquí es extremadamente importante mencionar, y esto es un error común entre cerveceros (que nosotros también cometimos), que de modificar el ph de la mezcla esto se debe realizar y medir en la mezcla y no en el agua previo a echar el grano. Esto ya que el grano, por naturaleza, acidifica el agua. Diferentes tipos de grano acidificaran en distinta medida el agua.
Para acidificar la mezcla se puede utilizar ácido-fosfórico alimenticio al 85% el cual puede ser obtenido en cualquier droguería. Para medir el ph es necesario un ph-imetro los cuales lamentablemente son excesivamente caros para su uso casero, por lo que nos conformaremos con la acidificación que la malta provoca en el agua he igual obtendremos un buen resultado.


Etiquetas Tematicas

@CervezalBlog (31) AB InBev (1) ACERCA DE... (1) ACHT (12) Adicion de Especias (6) Adicion de Frutas (6) Adicion de Lupulos (28) Aditivos (14) Adjuntos (30) Adriana Paonessa (1) Affen (1) Africa (11) Albania (2) Alcalinidad (2) Aldona Udriene (4) Alemania (77) Alewife o Brewster - ¿Brujas? (8) Aloja (11) Amilasas (14) Amstel (1) Anchor Steam Beer (6) Andes Origen (8) Angel Share (1) Angela y Georg Berg (1) Anheuser-Busch (2) Antarctica (1) Antares (4) Anton Dreher (1) Anton van Leeuwenhoek (1) Antonella Sotera (1) Antonio Mastroianni - BarbaRoja (1) Anwandter (6) Aportes de la gente (65) Argentina (659) Armenia (8) Aro Rojo (4) Arte y Publicidad (83) Asia (2) Aspergillus oryzae (6) AstorBirra (7) Atenuacion (4) Australia (7) Austria (7) Auto-Sifon (1) Azucar Invertido (2) Barm (4) Barrido de CO2 (1) Barriles-Barricas de Madera (4) Bebida No Fermentada (5) Bebidas Carcelarias (3) Belgica (37) Bieckert (10) Bielorusia (10) Biotransformación (5) Birrapedia (11) BJCP (3) Blest (11) Bolivia (17) Bors (5) Bosnia-Herzegovina (2) Botellas de gres (4) Brahma (1) Brasil (48) Brettanomyces (22) Brewers Association (5) Brewgrass Homebrew Supply (30) Brígida Mena (1) Brunnen (1) Bulgaria (2) Butch Krill (2) Calculos (104) Camerun (1) CAMRA (9) Canabis (6) Canada (8) Candy Sugar (6) Carbonatacion (26) carce (1) Carlos Sexauer - Cerveceria Sexauer (3) Carlsberg (13) CCU (59) Cerex (2) Cervecería Argentina (6) Cervecería La Posada del Taique (1) Cerveceria Neumeyer (1) Cerveceria Rothenburger (1) Cerveceria Schlau (4) Cerveceria Strasser (1) Cerveceria Vyatich (1) Cerveceria Weiss & Michatt (1) Cerveceros Artesanales de Villa General Belgrano (5) Cerveja Facil (4) Cervesaurio Cerveza Artesanal (1) Cerveza Abdij Deleuze (14) Cerveza Artesanal Colomb's (5) Cerveza Artesanal El Bolsón (4) Cerveza Cruda (37) Cerveza Ebner (1) Cerveza Raiz - Root Beer (2) Cerveza Santa Fe (7) Cerveza y Sociedad (11) Cervezapedia (1) Cervezas de Pergamino (7) Charlie Papazian (18) Chicha (125) Chile (167) Chilebruers (4) China (15) Chipre (2) Chopp Cassaro (1) Chuico - Damajuana (2) Ciudad del Vaticano (1) Clarificantes (10) Cold Steeping - Cold Mash (4) Colombia (27) Color de la Cerveza (7) Colorado (2) Comarca Andina (2) CondorLAB (5) Connor's (1) Coopers (1) Corona Extra (4) Costa Rica (4) Crabtree (5) Croacia (1) CRUDO Clases de Cocina (3) Cruzcampo (2) Cuba (30) Curazao (1) Daniel Schavelzon (5) Daniela Reina (1) Danstar (1) De Libros... (75) Decoccion (6) Defectos (27) Degustacion-Cata (4) Destilaciones (75) Diacetilo (13) Diageo (1) Diccionario (2) Diego Felipe Bruno (1) Diego Libkind (34) Dinamarca (30) Dinant (1) Dioses - Diosas - Duendes y Hadas (30) DIY Homebrewers (1) Doble Malta (2) Dogfish head (18) Ecuador (15) Eduardo Deleuze (18) Eficiencia (1) Egipto (26) El Salvador (3) Envases (12) Enzimas (16) Equipos (38) Escandinavia (9) Escocia (12) Eslovaquia (7) Eslovenia (2) España (119) Espuma (6) Estados Unidos (211) Esteres y Fenoles (2) Estilos (78) Estonia (14) Estrella de 6 puntas (3) Estrella Galicia (4) Etiopia (4) Euby® (1) Extractos de Lupulo (CO2 - ISO - Tetra) (3) fer (1) ferment (1) Fermentacion en general (16) Fermentacion y Madurado - Cerveza (29) Fermentaciones Varias (406) Fermentar Azucar (5) Fermentis (3) Filipinas (2) Filtrado (3) Finlandia (40) Foeder (5) Fotoxidacion (5) Francia (15) Free Beer (14) Fritz Maytag (3) Gabriel Sedlmayer (1) Gabriel Vivanco (3) Game Of Brews (7) Garrett Oliver (3) Gelatinizacion (13) George Hodgson (4) Georgia (4) Gerard Mir Oliveras (3) Ghana (2) Giga Yeast (1) Gingerbeer (7) Gorila (1) Gotland (4) Grados Brix (2) Grecia (27) Gruit (16) Guadalupe (1) Guatemala (4) Guia Cervezal (219) Guillermo Ysusi (1) Guinness (11) Gushing (2) Gypsy - Fantasma (3) H2OPS - Paul Tucker (1) Haiti (1) Hard Seltzer (3) Hartog Elion (2) Heady Topper (3) Heineken (18) Hernan Castellani (1) Hidromieles (43) Hildegarda de Bingen (8) Hillbilly/Redneck Wine - Vino de Frutas (68) Honduras (14) Hong Kong (2) Hongos y Bacterias (4) Hop Creep (1) Hop Water - Agua de Lúpulo (1) Huevos de Concreto-Hormigon (2) Hungría (1) IBU's (11) Imperial (10) Imperial Yeast (1) Inaf-Laiken - Sergio Velez (12) India (8) Interbrew (1) Interlaken (1) Irak (13) Iran (4) Irlanda (16) Isenbeck (6) Islandia (2) Islas Cook (1) Israel (12) Italia (22) Japon (21) Javier Carvajal (3) JC Jacobson (1) Jereme Zimmerman (2) Jodoco Ricke (3) Jordania - Cisjordania (1) Jose Paulo Sampaio (11) Josef Groll (1) Josef Sepp Neuber (1) Juan Carlos Bahlaj (4) Judit Cartex (3) Juegos (3) Juguetes Perdidos (23) Julio Silva (1) Katie Williamson (5) Kazajistán (1) Kbac-Kvass (52) Kefir (Bulgaros-Pajarito) (6) Kefires (22) Kettle-Sour (10) Kim Sturdavant (1) Kirguistán (1) Kombucha (1) Korea (2) korea del Norte (2) Krausening (1) Kristoffer Krogerus (6) Kroᥒomᥱthᥱr (2) Krueger's Beer (5) Kunstmann (6) Kvasar (3) Kveik (17) La Bru (3) La cerveza de mi País 2021 (5) La Maquina de Cerveza Monkey Beer (1) La Pinta De La Paz y La Pinta Desleal (6) Laos (2) Lars Marius Garshol (38) Lavado (14) Letonia (13) Levadura de Pan (67) Levadura Kahm (4) Levaduras (175) Ley de pureza de 1516 - Reinheitsgebot (3) Libano (1) Líbano (1) Licores / Aperitivos / Vinos / Blends / Ponches (297) Limache-CCU (28) Lindenberg (3) Liso (5) Lituania (31) Logia Cervecera (3) Los Chicos (5) Lotte Vinge (2) Low Cost - Marca Blanca (6) Ludwig Narziss (1) Luis Cuellar (12) Luis Di Motta (5) Lupulos (57) Lupulos Argentina (6) Macedonia (2) Macerado (60) Madera (2) Mahina (2) Mak Bier (1) Maltas (46) Maltodextrinas (2) Mapuche (12) Marcel Besnard (1) Marcelo Cerdan (4) Marcelo Scotta (10) Maria Rosa Giraudo (4) Mariano Balbarrey (1) mart (1) Martinica (1) Martyn Cornell (7) Mary Anne Gruber (1) Mash Out (1) Matias Jurisich (1) Medir Densidad (4) MENÚ GENERAL (1) Merryn & Graham Dineley (1) Mesta Nostra (7) Método BLUMBEŸ (3) Mexico (84) Michael Jackson (21) Michael Peter Fritz Kempe (1) Michael Tonsmeire - TheMadFermentationist (5) Mika Laitinen (12) Misceláneos (91) Mistelas (9) Mongolia (1) Monica Huerta Alpaca (2) Montenegro (2) Moonshine (2) Moretti (1) Mujeres (117) Muntons (1) Natalí Ledesma (2) Nepal (1) Nick Bower (2) Nigeria (2) No-Chill - Sin Enfriamiento (3) Nodulos Tibicos (20) Noruega (43) Notas (1747) Nucleated Beer Glass (3) Nueva Zelanda (2) NuevoOrigen (9) Nutrientes (2) Olga Hansen (2) Omega Yeast (1) Omnipollo (12) Ona Giriuniene (4) Orestes Esteves (3) Osmosis Inversa (1) Otras Recetas (114) Otro Mundo (1) Otto Bemberg (4) Otto Tipp (2) Otto y Emma Koehler (1) Oxidacion (2) Oxigenacion (2) Pablo Fazio (2) Paises Bajos (37) Palestina (4) Palos Magicos - Anillos de Levadura (8) Panamá (2) Parada de Sacarificacion (2) Parada Proteica (3) Paraguay (4) Parti-Gyle (10) Pascal Baudar (21) Paso a Paso (32) Pasteurizado (4) Patagonia (27) Paul Ehrlich (1) Pausas o Paradas (8) Pearl Brewery (1) Pediococcus (2) Pedro Biehrman (14) Pellicle (3) Peñón del Aguila Cerveza (2) Perfiles de Agua Objetivo (5) Perinola Cervezal (1) Peroni (1) Peru (56) PH y Manejo del Agua (29) Piedras Calientes (5) Pierre Celis (3) Pivovary Staropramen (1) Placas (416) Playmobil (2) Playmoguardian (1) Poder diastásico (7) Polonia (14) Poly-gyle (2) Porter/Stout (8) Puerto Rico (2) Quemadores (1) Quilmes (58) Quilmes y Peron el Caso Bemberg (3) Rabieta (1) Ralph Harwood (1) Rastal (2) Raúl Falcón (1) Raw Ale (37) Real Ale (11) Receta Cerveza (449) Receta Cerveza Levadura de Pan (14) Receta Cerveza Marihuana / Cannabis (1) Receta de Licores-mistelas y ponches (82) Receta Gruit (2) Receta Hard Seltzer (3) Receta Hop Water (1) Recetas (869) Recetas Carcelarias (6) Recetas Chicha (57) Recetas de Aloja (8) Recetas de cerveza de la Casa Blanca (2) Recetas de comidas vinculadas (40) Recetas de la gente (236) Recetas Destilados (12) Recetas Hidromieles (36) Recetas Vinos (78) Reino Unido (144) Reiterated Mash (1) Renato “Tato” Giovannoni (1) Rendimiento (4) República Checa (10) República de El Bolsón (2) República Dominicana (3) Ricardo “Semilla” Aftyka (19) Ricardo Andres Satulovsky (8) Ricardo Muhape (1) Richard Preiss (1) Roel Mulder (25) Royal Guard (1) Rudi Loistl (1) Rumania (8) Rusia (117) SABMiller (3) Saccharomyces bayanus (2) Saccharomyces eubayanus (32) Sales de Burton (1) Samogon Lab (1) SAMoVAR TV (1) Samuel Adams (8) Samuel Smith’s (1) San Patricio - Saint Patrick Day (3) Sanitizado (10) Schneider (5) Sebastian Oddone (124) Sensorytrip (12) Serbia (2) Servicio y Cristaleria (36) Servomyces (3) Session Beer (2) Setomaa (1) Shower Beers (2) Sidra (10) Sierra Nevada (1) Sin Alcohol (8) Sin Gluten (44) Singapur (1) Siria (4) Socialismo y Cerveza (6) SOFTWARE (8) Sol Cravello (1) Sour (20) Spiegelau (7) St. Wendeler. (3) Stella Artois (1) Steve Huxley (4) Sudafrica (6) Suecia (22) Suiza (2) Sumerios (11) Svetlana Vasilyevna (1) Tailandia (1) Tanzania (1) Tayikistán (1) Termovinificacion (1) Tetrahops (3) The Alchemist (4) The American Can Company - ACCO (4) The Beer Hunter (11) Tibet (1) Tired Hands Brewing Company (2) Tres Jotas Beer Club (9) Turbidez en frío o Chill Haze (4) Turkmenistán (1) Turquia (11) Ucrania (9) Un1ca (2) URSS (24) Uruguay (35) Uzbekistán (1) Venezuela (10) Vicky Di Paula (1) Videos (48) Viejo Munich (1) Vores Øl (2) Walter Vogrig (2) Warsteiner (5) Wayfinder Beer (Kevin Davey) (1) WhiteLabs (1) Willem van Waesberghe (4) William Shakespeare (1) Zero IBU IPA (2) Zimbabwe (2) Zoigl (7) Zoya Nikonova (1)

Síguenos en Facebook

Síguenos en Facebook
Te esperamos

Entradas populares

Destacados

Chicha Tradicional de Maiz y Cerveza

Jack Hornady Chicha es el nombre que reciben diversas variedades de bebidas alcohólicas derivadas principalmente de la fermentación no d...