Páginas

Protocolo de fermentación para producción de Koji

Objetivo

Este protocolo tiene como objetivo estandarizar el proceso de producción de Koji a través de la definición y descripción de:

  • los materiales utilizados para su producción
  • las diferentes fases del proceso
  • los parámetros implicados durante el proceso
  • las correlaciones entre los parámetros del proceso y la producción enzimática
  • análisis de tipo teórico sobre los riesgos toxicológicos del proceso.

Se busca optimizar el proceso considerando el crecimiento del hongo, con el fin de obtener el máximo crecimiento de micelio, la máxima producción enzimática, evitar la contaminación bacteriana durante el cultivo del hongo y en los materiales empleados y  prevenir la inactivación de las enzimas producidas.

Introducción

El koji es un ingrediente muy importante en la tradición alimentaria en el sudeste asiático y en asia oriental, constituye el primer paso en la producción de alimentos fermentados como la salsa de soja, el miso, el mirin, el sake o el amazaké.  Su  producción se basa en la inoculación de un substrato de granos (ricos en carbohidratos y proteínas) con Aspergillus oryzae, el cual realiza un proceso fermentativo con la consecuente producción de enzimas  extracelulares (amilasas y proteasas) que tienen la capacidad de hidrolizar macromoléculas  como el almidón, dextrinas y proteínas, convirtiéndolas en carbohidratos más simples, péptidos o aminoácidos. La producción enzimática es una característica fundamental del proceso y es la actividad de estas enzimas sobre diversos substratos, lo que convierte al Aspergillus oryzae en la primera etapa de múltiples elaboraciones y fermentaciones.

Agente

El microorganismo responsable de la fermentación en el  proceso de producción de Koji  es  el Aspergillus oryzae, es un hongo filamentoso con  la capacidad de excretar, en grandes cantidades, diferentes enzimas  hidrolíticas. La capacidad de secretar proteínas al medio, se potencia si el cultivo se realiza en un medio sólido comparado con un medio sumergido (Biesebeke et al. 2002). Los dos principales metabolitos primarios secretados por el Aspergillus Oryrzae son la α-amilasas (endo-1,4- α -d-glucanglucohydrolase EC 3.2.1.1) y las proteasas (Chancharoonpong et al. 2012).

La α-amilasa realiza una hidrólisis random de los enlaces  α-1,4 en la cadena lineal de las macromoléculas de almidón. De su acción se obtienen dextrinas y cadenas cortas constituidas por glucosa. De este modo la amilasas encuentra particulares aplicaciones en la industria de alimentos, textil y en la industria del papel.

En relación a las proteasas, estas son clasificadas en función de su acidez en ácidas, neutras y alcalinas según el pH en cual tienen la máxima actividad. Las proteasas neutras son unas de las más importantes en la industria de alimentos ya que tienen la capacidad de hidrolizar los enlaces peptídicos a pH neutro reduciendo la amargura (Sandhya C. et al. 2005). Las proteasas ácidas están presentes en la mayor parte de aplicaciones del koji donde el pH es ácido.

Medio de cultivo

El medio de cultivo  puede ser  constituido por diferentes cereales (trigo, arroz, cebada, ect) los cuales presentan una composición de macromoléculas bastante similar Tabla 1.  La fermentación en cuestión se realiza en un medio sólido. Este tipo de medio es muy beneficioso para el crecimiento del hongo debido al bajo contenido de agua (40-60%), permitiendo la penetración de los micelios del hongo a través del substrato sólido. Por otra parte, la baja humedad en un medio de cultivo sólido,  hace que  los microorganismos adquieran la capacidad de producir metabolitos (deseados en el caso de la producción de Koji), que en medio líquido no serían  producidos. (Biesebeke et al. 2002).

Al considerar diferentes cereales como substrato, no hay diferencias significativas respecto a la producción enzimática. Sin embargo, el substrato de trigo permite  la máxima producción, a nivel de expresión génica, de enzimas hidrolíticas específicamente α-amilasas (Maeda et al., 2004). Como evidencian los estudios de (Machida et al., 2008) el A. oryzae en un terreno de cultura sólido constituido por trigo es capaz de producir cerca de  50 g de α-amilasas por kilo de trigo.  Otros terreno de cultivo  a base del arroz favorecen la producción de proteasa (Chutmanop et al., 2008).

Trigo
Proteína15%
Grasa6%
Carbohidratos79%
Cebada
Proteína13%
Grasa6%
Carbohidratos81%
Arroz
Proteína8%
Grasa4%
Carbohidratos88%

Tabla 1. Datos del trigo. Fuente: Bedca  (Base de Datos Española de composición alimentaría)

Parámetros

Los parámetros fundamentales durante los procesos de fermentación son:

  • Humedad del substrato
  • Temperatura
  • Tiempo

Entre los parámetros antes mencionados no se encuentra el pH, ya que dicho parámetro en la producción de Koji no resulta un parámetro crítico  en la producción enzimática (amilasas y proteasas), si el intervalo de trabajo  es cercano a la neutralidad (pH 5,5- 7,5) como lo indica (Francis et al., 2003) y (Sandhya et al., 2005).

Por su parte la concentración de Aspergillus en el medio se fija a 10 esporas/g DS en el medio.

Es necesario mencionar que las condiciones óptimas de crecimiento del hongo, no corresponden  con las condiciones óptimas de producción enzimática. Por este motivo  para definir las condiciones se tienen  que considerar tres protagonistas en la producción del koji: el Aspergillus oryzae, α-smilasas y proteasas (neutras y ácidas). Las condiciones de producción óptimas resultan las condiciones en las cuales se permite el crecimiento del microorganismo y maximizan la producción de los metabolitos primarios de interés.

Otro aspecto importante radica en el hecho de que las amilasas y la proteasas son producidas en fases diferentes  del crecimiento del microorganismo. Por una parte, las amilasas son excretadas  al inicio del proceso metabólico (0-18h) puesto que son enzimas necesarias que permiten la disponibilidad de alimento (carbohidratos simples) para el  microorganismo (Chutmanop et al., 2008). Las proteasas, por su parte, son producidas en una segunda fase (18-48h) cuando el microorganismo ya ha crecido suficientemente y ha consumido los carbohidratos disponibles en el medio de cultivo (Chutmanop et al., 2008).

Humedad inicial

En los procesos fermentativos en estado  sólido, la humedad inicial del substrato es un factor crítico en el crecimiento del hongo y en la producción  enzimática. La presencia de agua en el sustrato hace que los nutrientes sean más  accesibles para el hongo, favoreciendo su crecimiento. Un exceso de la humedad del sustrato  afecta a la difusión del oxígeno en el medio reduciendo la porosidad, haciendo que las partículas se peguen entre si afectando negativamente a la transferencia de oxígeno al  hongo, y por consiguiente al crecimiento del microorganismo. Por otra parte, una disminución de la porosidad impide la disipación de calor, favoreciendo  un incremento de la temperatura durante la primera fase en donde hay una respiración muy activa. Una temperatura elevada (superior a 45ºC) puede matar el microorganismo.

Por su parte una baja humedad del sustrato reduce los valores de agua libre hasta niveles que no favorecen el  crecimiento del hongo.

Durante el proceso fermentativo, en especial durante la fase de crecimiento del microorganismo, se evidencia una actividad respiratoria del mismo elevada con consecuente  producción de CO2 y agua,  que se traduce en un aumento de humedad. Sin embargo después de esta primera fase de crecimiento el metabolismo de hongo disminuye su cinética y se presenta una reducción en la humedad de medio (Chancharoonpong et al. 2012).

Las condiciones óptimas de humedad para crecimiento del hongo, no  corresponden  con las condiciones óptimas de producción enzimática (Tablas 2).

EstadoHumedad % subtrato
Crecimiento Aspergillus oryzae40 a
Producción α-amilasas70 a
Producción proteasas neutras35 c

Tablas 2. Condiciones de Humedad óptima del sustrato para el crecimiento del Aspergillus oryzae, α-amilasas y proteasas neutras.  Fuente: a. Narahara et al, 198 , b.  Francis et al., 2003, c. Narahara et al, 1982

La humedad  inicial óptima  del medio de cultivo es 50-55%.  Esta humedad favorece el crecimiento del microorganismo y la producción de amilasa en las primeras horas de proceso. Considerando la disminución de la humedad durante la segunda fase metabólica, la humedad del medio resulta muy cercana a la humedad óptima para la producción de proteasas.


Figura 2: perfil del pH y de la humedad en el tiempo: Fuente (Chancharoonpong et al. 2012)


Temperatura

La temperatura resulta un parámetro fundamental en el desarrollo de los parámetros biológicos, ya que determina los efectos de la desnaturalización de las proteínas, la inhibición enzimática, y  la activación o supresión de la producción de metabolitos.

Al igual que con la humedad del medio de cultivo, la temperatura óptima de crecimiento del Aspergillus oryzae, difiere de la temperatura óptima de producción de  α-amilasas y proteasas (tabla 3)

EstadoT Optima ºC
Crecimiento Aspergillus oryzae38 a
Producción α-Amilasas30-35  b
Producción Prótesis25-30 c, d

Tablas 3. Condiciones de temperatura óptima del sustrato para el crecimiento del Aspergillus oryzae, α-amilasas y proteasas neutras.  Fuente a.  Narahara, H. et al, 198 , b.  Francis. et al., 2003, c.  Chutmanop et al., 2008, d. Narahara. et al, 1982

Por este motivo durante el proceso de producción de Koji es oportuno utilizar dos temperaturas a lo largo del proceso. Una temperatura en la fase inicial (0-18h)  de 32ºC, para favorecer el crecimiento del Aspergillus y la producción de amilasas y  otra temperatura en la fase de producción de proteasas (18-48h) de entre 25-30ºC.

El parámetro de la temperatura puede verse afectado si no tenemos en cuenta que durante la primera fase  de este proceso (0-18 h), como consecuencia de la actividad metabólica (respiración con consecuente liberación de energía térmica) se produce un aumento de la temperatura.

Por lo tanto sería oportuno durante la primera fase,  fijar el SP (set point) de temperatura en 32ºC. Esta temperatura aumentará  6ºC por el calor emitido por la actividad metabólica y por consiguiente se trabajara en un rango de temperatura de entre 32ºC y 38ºC, rango óptimo para el crecimiento microbiológico y para la producción de amilasas.


Tiempo

La producción de koji debe tener un tiempo máximo de 48 h, ya que la máxima producción de proteasas se alcanza después de 48h, acto seguido entra en una fase decreciente (Chancharoonpong  et al. 2012).

Por otra parte después de 50 h el Aspergillus oryzae, inicia la producción de metabolitos secundarios entre los que se encuentran el ácido Kojico, ácido ciclopiazónico, Maltorizina, ácido 3-Nitropropiónico, los cuales son tóxicos (Blumenthal, 200).

a)


b)


Figura 4. a) Temperatura y humedad de Set point (SP) en la producción de Koji. En términos de humedad del medio solo se considera la humedad inicial del medio a 55%.   Considerando la temperatura se establecen dos SP de temperatura  en función del tiempo.  Tiempo 0-18h de Temperatura SP= 32ºC y tiempo de 18-48h de   Temperatura SP=25ºC. b) Tendencia de la actividad enzimática de las proteasa y amilasa en función del tiempo. Fuente: Chutmanop  et al., 2008.


Figura 5. Descripción de las condiciones  tiempo y temperatura de crecimiento óptimo de Aspergillus oryzae y  producción de α-amilasas y proteasas. 

Materiales y Método

Materiales:

  • 1kg de Cereal (cebada, trigo o arroz).
  • 2 g Esporas de Aspergillus oryzae.
  • Horno o estufa con control de temperatura y conservador de humedad.
  • Paños limpios esterilizados
  • Recipiente rectangular plástico.
  • Termómetro.
  • Alcohol para desinfección de los materiales y equipos.
  • Guantes propileno

Método tradicional de la preparación del  Koji:

La preparación del Koji sigue las siguientes fases:

  • Remojo
  • Cocción (vapor)
  • Enfriamiento
  • Inoculación
  • Incubación

Los pasos de preparación se describen a continuación:

  1. Remojar el cereal durante 12 h mínimo. Para el remojo se utiliza agua para favorecer que el grano se ablande.
  2. Cocinar el cereal en un horno a vapor  100ºC durante 90 minutos utilizando una bandeja perforada filmada.
  3. Una vez el cereal se ha enfriado (35-30ºC), esterilizar las manos con alcohol, ponerse guantes y verter el cereal en un contenedor hermético creando un estrato de aproximadamente 2 cm de espesor.
  4. Preparar un paño, esterilizado caliente, húmedo y escurrido para cubrir el koji.
  5. Cuando el salvado ha llegado a una temperatura de 35ºC y se ha dispuesto el cereal en una bandeja con las esporas de A. oryzae en polvo y se mezcla bien en modo de cubrir todos los granos.  A continuación se cubre el todo con el paño antes preparado.
  6. Poner en una bandeja en la incubadora con control de temperatura a  32ºC. Consideraremos ahora tiempo 0 en la fermentación.
  7. Después de 18h (t=18h), se retira la bandeja y se mezcla  el koji para airear y asegurar una distribución uniforme de las esporas. Debe comenzar a oler afrutado y fragante.  Rehumedecer el paño, cubrir nuevamente. Cambiar el set point de la temperatura del horno a 25ºC. A este punto se introduce el recipiente en la incubadora nuevamente.
  8. Al t=24h mover nuevamente el koji. Volver a introducir el recipiente ala incubadora con el paño humedecido.
  9. Al t =30h, se mezcla  por la última vez el koji, Se humedece de nuevo el paño  y se introduce el recipiente en la incubadora.
  10. Después de 36h el micelio ha cubierto completamente  los granos  y se encuentra completamente mezclado con el substrato. En  este periodo se evidencia la producción de proteasas.
  11. A las 48 h retirar el koji de la incubadora.

Evaluación Toxicológica

Durante la fermentación Aspergillus oryzae además de la producción de amilasas y proteasas,  se producen metabolitos secundarios muchos de los cuales pueden ser tóxicos: ácido kojico, ácido ciclopiazónico, maltorizina, ácido 3-Nitropropiónico entre otros. Sin embargo, como es declarado por Environmental Protection Agency (EPA), 1997b en su documento de decisión final, bajo las condiciones usuales de cultivo, la cepas comercializadas de Aspergillus oryzae no parecen  producir micotoxinas  a niveles significativos. Esta afirmación es confirmada por diferentes estudios científicos (Kusumoto, K. I.et al., 1998; Kusumoto, K. I.et al., 2000; Liu and Chu, 1998; Watson et al., 1999; Wei and Jong, 1986) en donde se afirma que los genes del A. oryzae responsables de la biosíntesis de aflatoxinas estas desactivados.

Por otra parte, la producción de ácido ciclopiazónico no se verifica con  tiempos de inoculación de A. oryzae inferiores a 50h como lo evidencia Goto et al. 1987. El  tiempo de inoculación descrita en este método, es  de 48 h por lo tanto,  se puede concluir que no habrá producción de este metabolito.

Por su parte, la producción de maltorizina depende de la composición del substrato y en el caso de producción de koji utilizando arroz, cebada,  trigo o maíz, no se verifica la producción de este compuesto (Blumenthal, 2004).

En cuanto al ácido kojico, fue demostrado por  Burdock et al, 2001 que no presenta un peligro para la salud humana en las concentraciones producidas durante la fermentación producida por Aspergillus oryzae.

Conclusiones

La producción de koji es un proceso fermentativo, a partir del crecimiento de Aspergillus oryzae en un substrato sólido, formado por cereales ricos en carbohidratos y proteínas, que tiene como objetivo  la producción de amilasas y proteasas.  Teniendo en cuentas que estos dos tipos de enzimas son secretadas en fases diferentes del proceso, se proponen finalmente  los siguientes parámetros para maximizar la producción de las dos enzimas: humedad inicial del medio 50-55 %; temperatura en las primeras 18h de proceso de 32ºC y temperatura en la segunda fase del proceso (18h-48h) de 25ºC; un tiempo de crecimiento máximo de 48h.

Se concluye  que el proceso de producción de Koji,  siguiendo las indicaciones presentadas en este estudio,  no  conlleva  la producción de sustancias tóxicas como aflatoxinas y otros metabolitos secundarios tóxicos.

Bibliografia

  • Biesebeke, R., Ruijter, G., Rahardjo, Y. S., Hoogschagen, M. J., Heerikhuisen, M., Levin, A.,  & Weber, F. J. (2002). Aspergillus oryzae in solid-state and submerged fermentations. FEMS yeast research, 2(2), 245-248.
  • Blumenthal, C. Z. (2004). Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungi. Regulatory Toxicology and Pharmacology, 39(2), 214-228.
  • Burdock, G. A., Soni, M. G., & Carabin, I. G. (2001). Evaluation of health aspects of kojic acid in food. Regulatory toxicology and pharmacology, 33(1), 80-101.
  • Chancharoonpong, C., Hsieh, P. C., & Sheu, S. C. (2012). Production of enzyme and growth of Aspergillus oryzae S. on soybean koji. International Journal of Bioscience, Biochemistry and Bioinformatics, 2(4), 228.
  • Chutmanop, J., Chuichulcherm, S., Chisti, Y., & Srinophakun, P. (2008). Protease production by Aspergillus oryzae in solid‐state fermentation using agroindustrial substrates. Journal of Chemical Technology and Biotechnology,83(7), 1012-1018.
  • Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15(2), 107-115.
  • Goto, T., Shinshi, E., Tanaka, K., & Manabe, M. (1987). Production of cyclopiazonic acid by koji molds and possibility of cyclopiazonic acid contamination of Japanese fermented foods. Report of National Food Research Institute (Japan).
  • Kusumoto, K. I., Nogata, Y., & Ohta, H. (2000). Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Current genetics, 37(2), 104-111.
  • Kusumoto, K. I., Yabe, K., Nogata, Y., & Ohta, H. (1998). Aspergillus oryzae with and without a homolog of aflatoxin biosynthetic gene ver-1. Applied microbiology and biotechnology, 50(1), 98-104.
  • Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process biochemistry, 40(8), 2689-2694.
  • Machida, M., Yamada, O., & Gomi, K. (2008). Genomics of Aspergillus oryzae: learning from the history of Koji mold and exploration of its future. DNA research, 15(4), 173-183.
  • Maeda, H., Sano, M., Maruyama, Y., Tanno, T., Akao, T., Totsuka, Y., … & Akita, O. (2004). Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence tags. Applied microbiology and biotechnology, 65(1), 74-83.
  • Narahara, H., Koyama, Y., YOSHIDA, T., PICHANIGKURA, S., UEDA, R., & TAGUCHI, H. (1982). Growth and enzyme production in a solid-state culture of Aspergillus oryzae. Journal of fermentation technology, 60(4), 311-319.
  • Liu, B. H., & Chu, F. S. (1998). Regulation of aflR and its product, AflR, associated with aflatoxin biosynthesis. Applied and environmental microbiology,64(10), 3718-3723.
  • Watson, A. J., Fuller, L. J., Jeenes, D. J., & Archer, D. B. (1999). Homologs of Aflatoxin Biosynthesis Genes and Sequence of aflR in Aspergillus oryzae andAspergillus sojae. Applied and environmental microbiology, 65(1), 307-310.
  • Wei, D. L., & Jong, S. C. (1986). Production of aflatoxins by strains of the Aspergillus flavus group maintained in ATCC. Mycopathologia, 93(1), 19-24.

http://www.bculinarylab.com/2017/05/07/protocolo-de-fermentacion-para-produccion-de-koji/

La cerveza de la chica Egtved

En el ataúd de la Niña Egtved se encontró un cubo de corteza. En el fondo yacía un depósito espeso de color marrón. Cuando se analizó el contenido del cubo, quedó claro que contenía una bebida fermentada, probablemente cerveza endulzada con miel. La bebida estaba hecha de arándanos rojos o arándanos. También se encontraron granos de trigo, restos de mirto de pantano y grandes cantidades de polen (incluido polen de tilo).

El polen es la "huella digital" de las plantas y con la ayuda de un análisis cuidadoso es posible identificar las plantas que contenía la bebida.

La Niña Egtved es una de las figuras más conocidas de la prehistoria. Un día de verano de 1370 a. C. fue enterrada en un ataúd de roble que estaba cubierto por el túmulo Storehøj cerca de Egtved, al oeste de Vejle. Aunque no queda mucho de la Chica Egtved, su historia es una historia cautivadora de la gente de la Edad del Bronce.

De la niña misma solo quedan cabello, cerebro, dientes, uñas y un poco de piel. Sus dientes revelan que tenía entre 16 y 18 años cuando murió. Sobre su cuerpo vestía una túnica corta y una falda hasta la rodilla hecha de cuerdas. Una placa de cinturón de bronce decorada con espirales yacía sobre su estómago. También tenía un peine hecho de cuerno con ella en la tumba, sujeto a su cinturón. Alrededor de cada brazo había un anillo de bronce y ella tenía un anillo delgado en la oreja. Junto a su rostro yacía una pequeña caja de corteza con un punzón de bronce y los restos de una redecilla para el pelo. A los pies de la Niña Egtved un pequeño cubo de corteza había sido colocado, que alguna vez contuvo un tipo de cerveza. También había un pequeño bulto de ropa con los huesos cremados de un niño de 5 a 6 años. Se encontraron algunos huesos del mismo niño en la caja de corteza. La Niña Egtved volvió a ver la luz del día cuando se excavó su tumba en 1921, casi 3500 años después.

La planta de mirto de pantano crece en pantanos y marismas.

La bebida de Egtved Girl posiblemente se hizo con arándanos rojos (Vaccinium vitis-idaea, lingonberry, partridgeberry, mountain cranberry o cowberry).

Polen de tilo de la cerveza Egtved Girl.

La cerveza de Egtved Girl, elaborada a partir de una receta de 3.300 años.
Egtvedpigens Bryg, Cerveza especiada / con hierbas de Bryggeriet Skands, Brøndby, Región Capital de Dinamarca.
5.5% ABV, 8 IBU

En 2019, se recreo la bebida de Egtvedpigen basada en una tradición de hidromiel. Ocurrió después de que en Snoremark Meadery, en colaboración con el Museo Nacional, fue recreado el hallazgo de hidromiel más antiguo de Dinamarca, que se fermenta solo con miel de tilo y la planta reina de los pradis (Filipendula ulmaria) los prados.

En este braggot, cerca del 1/3 de la dulzura inicial proviene del malteado, mientras que la parte restante proviene de la miel y los arándanos rojos. El requisito para un braggot es que la mayoría del azúcar que se fermenta provenga de la miel y que el azúcar en la malta represente un máximo del 50 % del nivel total de azúcar.

Históricamente, todo hidromiel contiene una o más hierbas amargas, y el hidromiel de Egtvedpigen no difiere de la tradición. Su bebida contiene porso.

Para intentar acercarse a la cerveza de la edad de bronce se usaron tinajas de terracota hechas hechas a medida para la fermentación. Los frascos se tratan internamente con cera de abejas de la misma manera que el cuenco de corteza de abedul de Egtvedpigen.

Se descubrió  que los frascos de terracota dan el mismo efecto con la microoxigenación que el que se obtiene con las barricas de roble. Cuando se comparo el sabor entre la cerveza de prueba de los tanques de acero y la cerveza de los barriles de terracota, existe una clara diferencia. El brebaje de la terracota le da un sabor más intenso y el braggot adquiere más cuerpo y plenitud. El resultado se puede comparar mejor con un vino rosado ligeramente espumoso.

Han habido otros intentos de recrear la bebida de la chica Egtved. Hace algunos años, el Museo Nacional en colaboración con la cervecería Skands desarrolló “Egtvedpigens bryg”, que es una cerveza de trigo endulzada con miel y producida en base al entendimiento del proceso cervecero, donde además de la malta, siempre se incluye lúpulo.

No es posible determinar cuál es la reproducción correcta, ya que los análisis no pueden dar una respuesta a la distribución entre miel, malta, arándanos rojos y porsa, o cómo se han tratado las materias primas antes de que se inicie la fermentación. Lo más probable es que la proporción de la mezcla también variara en la Edad del Bronce, pero lo cierto es que durante muchos cientos de años se elaboró ​​en Dinamarca una mezcla de miel, malta, arándanos rojos y porse.

La mujer juellinge

Cuando los arqueólogos analizaron los restos secos en la tetera de bronce que la mujer Juelling de Vestlolland se llevó a la tumba, también encontraron restos de un braggot que había sido fermentado exactamente con las mismas materias primas.

Fue enterrada hace unos 2.000 años, por lo que hay indicios de que ha sido una bebida muy valorada cuando, durante más de 1.000 años, se ha ceñido a una mezcla de miel, malta, arándanos rojos y porsa.

Hace 3.000 años los nórdicos bebían 'grog' con miel y productos naturales

Un equipo de arqueólogos descubrieron que los escandinavos antiguos, antes de los vikingos, bebían una mezcla alcohólica de cebada, miel, arándanos, hierbas e incluso vino de uva importado del sur y centro de Europa, según demuestran en una investigación reciente.

Desde el noroeste de Dinamarca, alrededor de 1500-1300 a. C, hasta la isla sueca de Gotland, en fechas tan tardías como el siglo I d. C. , los pueblos nórdicos se embebían con el alcohólico 'grog' o bebida híbrida en extremo rica de ingredientes locales, que incluían miel, arándano del pantano, arándano rojo, mirto, milenrama, enebro, resina de árbol de abedul, y cereales como trigo, cebada y / o centeno, y, a veces, el vino de uva importado de Europa meridional o central.

El estudio "Un enfoque arqueológico biomolecular del grog nórdico", fue dirigido por Patrick E. McGovern (izquierda), director científico del Proyecto de Arqueología Biomolecular del Museo de Arqueología y Antropología de la Universidad de Pensilvania. McGoven ya había investigado en 2009 el vino y la cerveza del pasado europeo.

Las evidencias arqueológicas biomoleculares proporcionaron “pruebas concretas de una temprana tradición nórdica de 'grog', extendida y de larga vida”, caracterizado por sabores distintivos y que probablemente tenía propósitos medicinales.

Se observó químicamente que la uva debió haber sido importada de Europa meridional en fechas como 1100 a. C.

Para los investigadores esto demuestra tanto el prestigio social y cultural que existía unido al vino, y la presencia de una red de comercio muy activa a través de Europa hace más de 3.000 años.

“Lejos de ser unos bárbaros -tan vívidamente descritos por los antiguos griegos y romanos- los primeros escandinavos, los habitantes del norte de la llamada Proxima Thule, emerge con esta nueva evidencia un pueblo con un toque innovador en el uso de productos naturales disponibles para elaborar rasgos distintivos en las bebidas fermentadas", subraya el Dr. McGovern.

"Ellos no eran contrarios a la adopción de los instrumentos de los europeos del centro y sur, y consumían sus bebidas preferidas en vasos importados, a menudo ostentosamente grandes. Tampoco tenían aversión a importar y tomar la bebida del sur, preferentemente vino de uva, aunque a veces lo mezclaban con ingredientes locales", añade.

Este "grog" nórdico, anterior a la época de los vikingos, se encontró enterrado en tumbas de guerreros y mujeres posiblemente sacerdotisas.

Una de las pruebas fue encontrada junto a una mujer joven que fue enterrada en un ataúd de un tronco de roble bajo un montículo, en Egtved, Jutlandia, Dinamarca. Los demás enclaves con evidencias se observaron en una extensión de 150 millas.

El más antiguo se encontró en una tumba de 1500-1300 a.C., en Nandrup, al noroeste de Dinamarca, donde un príncipe guerrero había sido enterrado en un ataúd de roble con una espada con un mango de bronce, un hacha de guerra y una jarra de cerámica, cuyo interior estaba cubierto con un residuo oscuro, del que se tomaron muestras.

Un segundo ejemplo, también en Dinamarca, datado en una fase posterior a la Edad de Bronce nórdica, entre los años 1100-500 a. C, provino de Kostræde.

Una tercera muestra de Dinamarca consistió en un residuo de color oscuro del interior de un gran cubo de bronce colocado en un ataúd de madera de una mujer de unos 30 años de edad, que data de la Edad del Hierro prerromana -alrededor de 200 a. C.-, y hallado en Juellinge, en la isla de Lolland, al suroeste de Kostræde. Había también restos de vino romano en un colador que la mujer tenía en su mano derecha.

Excavaciones del siglo I d. C. encontraron igualmente evidencias en la isla sueca de Gotland, en el Mar Báltico, junto a un tesoro que incluía un gran anillo de oro para el cuello y un par de campanas de bronce.

"El vino comenzó a importarse desde el sur de Europa, aunque sólo fuera como un goteo, a finales del II milenio a. C., creció a buen ritmo y, finalmente, eclipsó al tradicional 'grog', pero nunca por completo”, destaca el estudio.


“Muchos de los ingredientes del 'grog' nórdico pasaron a ser consumidos en la cerveza de abedul, y como principales agentes amargos (llamados gruit) de las cervezas medievales”, explica McGoven.

Posteriormente, en Baviera, en 1516, la ley alemana de pureza de la cerveza (Reinheitsgebot), limitó los ingredientes a la cebada, el lúpulo y el agua, convirtiéndose eventualmente en norma en el norte de Europa.

La historia popular nórdica relata que una criatura particularmente sabia, llamada Kvasir, fue creada por dos razas de dioses, los Æsir y los Vanir, escupiéndolo en un frasco grande. Kvasir fue más tarde asesinado por dos enanos que dirigieron su sangre a tres vasos grandes que contenían miel y el resultado fue una bebida mixta que confería el don de la sabiduría. “El mismo gran dios Odín fue capaz de robar este 'grog' y consumirlo, transformándose en un águila que voló a Valhalla, el paraíso guerrero nórdico".

Reconstruyendo el 'Grog'

"Lo más parecido al 'grog' se produce hoy en la isla de Gotland, en el Mar Báltico", el lugar donde se encontró el residuo de la última muestra, señala el Dr. McGovern.

“Se puede degustar el “Gotlandsdryka” en casas de campo. Está hecho a partir de cebada, miel, enebro y otras hierbas, como en la versión antigua”, agregó el investigador.

Sin embargo, la antigua bebida fue nuevamente recreada y ya está disponible en tiendas de bebidas alcohólicas en Estados Unidos gracias a Patrick McGovern. Fue llamada Kvasir.

“Es un híbrido de cebada, trigo de invierno, arándano rojo y arándano del pantano, aguamiel y miel, todo en uno y sazonado con mirto, milenrama, trébol, y jarabe de abedul. Una segunda versión de esta bebida se elabora desde la primavera de 2013 en Nynäshamns Ångbryggeri, en la costa este de Suecia, justo enfrente de la isla de Gotland, y se llama Arketyp, la cual está ahora disponible en las tiendas estatales”.

Este 'grog' nórdico tiene un perfil algo amargo por el sabor tostado del trigo, “comparable a una 'lambic belga' por la relativa escasez de recursos ricos en azúcar en el extremo norte".

"Ambas versiones del 'grog' se acoplarán perfectamente a la nueva cocina nórdica, con su énfasis en ingredientes naturales", dijo el Dr. McGovern.

https://snoremark.dk/en/girl-from-bronze-age-was-barried-with-braggot-mead/
https://en.natmus.dk/historical-knowledge/denmark/prehistoric-period-until-1050-ad/the-bronze-age/the-egtved-girl/the-egtved-girls-beer/
https://en.natmus.dk/historical-knowledge/denmark/prehistoric-period-until-1050-ad/the-bronze-age/the-egtved-girl/
https://untappd.com/b/bryggeriet-skands-egtvedpigens-bryg/626336
https://natmus.dk/historisk-viden/danmark/oldtid-indtil-aar-1050/bronzealderen-1700-fkr-500-fkr/egtvedpigen/egtvedpigens-oel/
https://www.rhythm89.com/42559-nordic-grog-ancient-alcoholic-beverage.html
https://www.rhythm89.com/42556-graves-nordic-grog.html
https://terraeantiqvae.com/m/blogpost?id=2043782%3ABlogPost%3A298944
https://www.tandfonline.com/doi/abs/10.1080/21662282.2013.867101#.UthkbNLuIrU