Buscar este blog

Sugerencias

Mira este sitio en su versión web; los dispositivos móviles ocultan material útil y dificultan la navegación. Utiliza las etiquetas de navegación de la barra lateral; presiona CRTL + F y busca una palabra clave, por ejemplo: "Recetas", o "Argentina" y podrás acceder mas fácilmente a diferentes temas y contenidos
Mostrando las entradas con la etiqueta Diego Libkind. Mostrar todas las entradas
Mostrando las entradas con la etiqueta Diego Libkind. Mostrar todas las entradas


Eubayanus Blond - Fermentando con Eubayanus por Kristoffer Krogerus

Se sabe desde hace algún tiempo que la levadura lager, es decir, Saccharomyces pastorianus, es un híbrido de Saccharomyces cerevisiae (levadura ale) y otra "especie lager" de Saccharomyces. Libkind y col. (2011) descubrieron recientemente una nueva especie de Saccharomyces, llamada Saccharomyces eubayanus, en los bosques de la Patagonia, y dado que coincide genéticamente con la parte no cerevisiae del genoma pastorianus, ahora parece como si se hubiera encontrado el 'otro padre'. . La levadura lager es conocida por su capacidad de fermentar a bajas temperaturas, y se cree que este rasgo se ha heredado de S. eubayanus. Debido al reciente descubrimiento, todavía no se ha investigado mucho sobre S. eubayanus, pero pensé que intentaría preparar un pequeño lote de prueba con la levadura. No estoy realmente seguro de qué tipo de perfil de sabor esperar de S. eubayanus, pero supongo que será bastante esteroso y "no limpio". La factura de la malta será simple, con un 80% de malta Pale Ale, un 10% de malta Munich, un 5% de cristal y un 5% de trigo, y apuntaré a un OG de alrededor de 1.050. Planeo hacer un macerado bastante bajo, ya que según la experiencia con fermentaciones experimentales en el laboratorio, S. eubayanus fermenta bastante lentamente y se atenúa relativamente mal. Apuntaré a alrededor de 30 IBU, y saltaré con algo que tenga disponible en el congelador, es decir, lo más probable es que Simcoe (ya que tengo algunos lúpulos de hoja de la cosecha 2011 que quiero usar). Planeo fermentar a 12 ° C, ya que quiero minimizar los posibles ésteres y sabores funky. (25.02.2013)


Especificaciones de la receta

Tamaño de ebullición: 19,68 
Volumen después de hervir: 17,68 
Tamaño del lote (fermentador): 13,00 
Volumen de embotellado: 11,00 
OG estimado: 1.049 SG
Color estimado: 15,6 EBC
IBU estimada: 29,9 IBU
Eficiencia de la sala de cocción: 60,00%
Tiempo de ebullición: 60 minutos

Ingredientes:

Cantidad  Nombre                                                            Tipo             % / IBU

  • 2.800 kg    Pale Ale (2 hileras) (6.0 EBC)                          Grano             80.0%
  • 0.350 kg    Munich (20.0 EBC)                                          Grano             10.0%
  • 0.175 kg    Crystal Malt - 60L (Thomas Fawcett)              Grano               5.0%
  • 0,175 kg    Trigo (6,0 EBC)                                                Grano              45,0%
  • 8,00 g        Simcoe [13,00%] - Hervir 60,0 min                 Lúpulo         15,0 IBU
  • 16,00 g       Simcoe [13,00%] - Hervir 15,0 min                Lúpulo         14,9 IBU
  • 16,00 g      Simcoe [13,00%] - Aroma Steep 15,0 min      Lúpulo            0,0 IBU
  • 1 paquete Saccharomyces eubayanus [124.21 ml] 
Previo a la preparación, las pruebas en el laboratorio han ido bien, pero la atenuación ha sido de alrededor del 70%. Se hara un puré muy bajo para no terminar con una cerveza empalagosa. También tengo un poco de miedo de no tener suficiente levadura viable y de que falle, ya que la cepa parece bastante sensible incluso a concentraciones moderadas de alcohol. Bueno, veremos cómo avanza la fermentación. Se seguirá la receta anterior, ya que quiero un amargor moderado en caso de que la cerveza termine dulce. Es probable que esta sea la primera cerveza casera fermentada con Saccharomyces eubayanus!
Actualización (08.03.2013): Acabo de terminar el día de cocción y lancé la suspensión de S. eubayanus en 13 litros de mosto 1.051 (eficiencia ligeramente mejor de lo que predije). Coloqué el recipiente de fermentación en mi refrigerador de fermentación a 12 C, donde lo dejaré fermentar durante al menos 3 semanas. ¡Con suerte, la levadura logra fermentar la cerveza lo suficientemente seca!

Actualización (09.03.2013): 12 horas después del lanzamiento ya hay actividad de esclusa, a pesar de la baja temperatura de fermentación. Estoy muy gratamente sorprendido.

Probando La Blonde con Eubayanus

Cervecería: Sly Cat Homebrewery
País: finlandia
Estilo: ¿Ale rubia?
ABV: 4,5%
Tamaño: 500 ml

(4.4.2013) La cerveza que elaboré con Saccharomyces eubaynus ha estado en el barril y en las botellas (logré sacar tres botellas de 500 ml que no cabían en el barril) durante 13 días, así que pensé en abrir una de las botellas por una probada rápida. En lo que a mí respecta, esta es la primera vez que la levadura se utiliza para elaborar cerveza (en casa) (fuera de los fines de investigación), por lo que será muy interesante ver qué tipo de cerveza produce. La atenuación fue bastante baja (66%), por lo que es de esperar que la cerveza no esté demasiado sobrecarbonada como resultado de una mayor fermentación en la botella. La cerveza parece haber caído cristalina, lo cual es sorprendente, ya que la levadura mostró propiedades de floculación realmente pobres en el recipiente de fermentación y de arranque. Quizás, al igual que Brettanomyces sp., La levadura flocula tan pronto como se somete a presión. No estoy seguro de cómo clasificar esta cerveza (ya que S. eubayanus no es ni una ale ni una levadura lager), pero supongo que es algo similar a una American Pale Ale, pero sin una gran cantidad de lúpulos tardíos. Tenga en cuenta que la cerveza solo ha estado dos semanas en la botella, por lo que es muy probable que el perfil de sabor cambie un poco en las próximas semanas.

Apariencia

Se oye un pop reafirmante cuando abro la tapa de la botella y la cerveza se vierte en el vaso con un color ámbar dorado ligeramente brumoso. La capa de levadura en el fondo de la botella está muy suelta y la cantidad de levadura en suspensión aumenta rápidamente (más rápido de lo normal) a medida que el vertido llega a la segunda mitad de la botella. Se forma una mínima espuma blanquecina, que se colapsa con bastante lentitud. Sospecho que el nivel de carbonatación podría ser bastante bajo. La cerveza deja algunos rastros de cordones a lo largo del vaso cuando el nivel de la superficie desciende en el vaso. En general, no es una mala apariencia, pero podría usar una cabeza un poco más grande y más retentiva y una apariencia un poco más clara para mi gusto.

Olor

Lo primero que me viene a la mente al oler la cerveza es una hoppy pilsner, y el aroma es bastante parecido a lager (lo sé, una mala descripción, pero eso fue honestamente lo primero que pensé cuando tomé el primer olor ). El aroma es sorprendentemente limpio (sin indicios de ésteres afrutados, fenólicos o funkiness), por lo que la baja temperatura de fermentación probablemente hizo lo suyo. El aroma presenta algunos tonos dulces de caramelo, galletas y malta granulada, junto con un lúpulo herbáceo, cítrico y ligeramente resinoso. El nivel de aroma general es bastante bajo. No está nada mal, y estoy deseando probarla.

Gusto

A medida que la cerveza entra en la boca, se puede notar directamente que el nivel de atenuación de la fermentación fue bastante bajo, ya que el sabor comienza con una malta dulce similar a una galleta. Aunque la cerveza es bastante dulce, no creo que sea demasiado dulce. Después del golpe inicial de malta, se une una fruta cítrica, que supongo que proviene de los lúpulos Simcoe. Hay una presencia definida de lúpulo, pero no se adueña del sabor y deja brillar los demás componentes de la cerveza. El final también es bastante dulce y presenta un amargor limpio, pero firme, que respalda bastante bien el dulzor. Me alegro de haber apuntado a IBU bastante altos, ya que con un menor amargor, esta cerveza probablemente habría sido empalagosamente dulce. La cerveza tiene una sensación en boca resbaladiza y tal vez algunos toques leves de caramelo, por lo que puede haber algo de diacetilo presente, pero los niveles son tan bajos que apenas puedo decir si estoy imaginando o si realmente están presentes. El sabor no está nada mal, y de hecho lo disfruté bastante, siendo una cerveza experimental. La dulzura era quizás un poco demasiado alta, pero no se podía hacer mucho en contra de eso considerando la levadura. También podría haber sido interesante utilizar algunos lúpulos nobles para esta cerveza, ya que podrían haber funcionado mejor que Simcoe.

Sensación en boca

La sensación en boca es bastante resbaladiza (se siente un poco aceitosa de alguna manera, aunque los niveles de lúpulo son bajos) y el cuerpo es medio lleno. El nivel de carbonatación es demasiado bajo, pero eso es algo que ayudará a evitar un par de semanas más en la botella o beber del barril.

En general

En general, me sorprendió gratamente. Había esperado un lío funky e imbebible, ya que se trata básicamente de una 'levadura salvaje', no adaptada a entornos y propósitos de elaboración, pero de hecho, la cerveza sabía y olía sorprendentemente limpia. La malta y el lúpulo realmente brillaban, aunque no era el propósito. La levadura se comportó bien a bajas temperaturas (el refrigerador de fermentación se fijó a 12 ° C), por lo que lo más probable es que la levadura contribuya a la tolerancia al frío y al rendimiento de la levadura lager. El nivel de extracto residual de la cerveza era bastante alto, a pesar de que hice puré a temperaturas muy bajas para hacer el mosto lo más fermentable posible. El nivel de atenuación de la levadura fue solo alrededor del 66%, por lo que dejó bastante azúcares. Espero volver a usar esta levadura, tal vez en una cerveza baja en alcohol (debido a la mala atenuación). Será interesante ver cómo se desarrolla este con el tiempo.





Euby®

Euby®: la levadura que se halló en Bariloche y cambió la historia de la Cerveza Lager en el mundo

En el año 2011, el doctor Diego Libkind, Investigador del CONICET y actual Director del Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC CONICET UNCo) publicó un artículo en la prestigiosa revista Proceedings of the National Academy of Sciences (PNAS), junto a investigadores de Portugal y de Estados Unidos sobre el descubrimiento de una nueva especie de levadura proveniente de los bosques Andino patagónicos de Argentina, a la que denominó Saccharomyces eubayanus (Euby®).


“Cuando estudiamos su genoma, su ADN, nos mostró que es igual a una parte del ADN de la levadura que se usa para hacer la cerveza Lager, la cual es un híbrido producto de la fusión de dos especies; una de ellas no se sabía de dónde venía pero se sabía que era adaptada al frío y eso es lo que descubrimos nosotros en Bariloche y cercanías”, señala Libkind.

Esta levadura se descubrió inicialmente en la superficie del hongo Llao-llao, que también se conocía con el nombre Pan del indio. Este hongo solo crece en troncos y ramas de algunas especies nativas como el cohiue, lenga, ñire, y en primavera producen unas estructuras redondas amarillas que naturalmente contienen azúcares, y que por lo tanto son un buen hábitat para las levaduras. Los pueblos originarios consumían los llao-llao directamente o los empleaban para producir una bebida fermentada conocida genéricamente como chicha y que era parte de sus rituales. Dicha costumbre se perdió hoy en día siendo reemplazada por la chicha de manzana.

Parte del trabajo de los científicos consistió en tomar muestras en distintos bosques, desde el norte de Neuquén hasta Tierra del Fuego, donde predominan las lengas, coihues y otros árboles que solo crecen en la Patagonia. Luego sus investigaciones permitieron determinar que la levadura Euby® es nativa de la región andino-patagónica por presentar la mayor abundancia y diversidad respecto del resto del mundo.


¿Cómo llegó la levadura Patagónica a Europa donde nació la cerveza Lager?, es aún una pregunta sin respuesta.

A partir de este hallazgo la historia de la cerveza Lager se ha reescrito, poniendo a Bariloche en el centro de la escena como el lugar donde se descubrió el eslabón perdido. Esto generó un fuerte interés entre los cerveceros de todo el mundo, tanto industriales como artesanales, quienes querían conocer el potencial de la nueva levadura salvaje para hacer cerveza. Fue a partir de esta necesidad que el CONICET, la Universidad Nacional del Comahue y la Secretaria de Ambiente de la Provincia de Rio Negro concretaron en 2018 una transferencia efectiva con la Asociación de Cerveceros Artesanales de Bariloche y Zona Andina (ACAB) para producir cerveza artesanal con la levadura Euby®, iniciando lo que hoy se conoce como el proyecto  “Cerveza Patagonia Salvaje”.

Links de interés




Analizan la distribución y diversidad global de más de 200 genomas de la levadura salvaje patagónica, EUBY®


Un estudio del que participaron investigadores del CONICET logra predecir los climas adecuados para el crecimiento de Saccharomyces eubayanus, y podría dar pistas sobre la evolución humana.

Publicado el 30 de abril de 2020

En el año 2011, en una investigación del Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC, CONICET-UNComahue), liderada por el investigador principal del CONICET Diego Libkind, se había presentado el hallazgo de la levadura Saccharomyces eubayanus, -la madre de la levadura híbrida que se utiliza en la producción de más del 90 por ciento de la cerveza mundial, cerveza Lager-. Desde allí, comenzaron numerosos trabajos sobre su aplicación industrial y artesanal, y la distribución geográfica de sus distintas poblaciones genéticas.

En esta nueva publicación, junto a investigadores de España y los Estados Unidos, presentaron el análisis a nivel genómico, fisiológico y geográfico de más de 200 cepas de la especie. Los resultados fueron publicados en la revista Plos Genetics.

Esta levadura, re-bautizada por CONICET en su versión comercial como EUBY®,  fue aislada por primera vez en bosques de la ciudad de Bariloche, en la provincia de Río Negro, y más tarde se halló en los Estados Unidos, Nueva Zelanda, y China, en poblaciones más reducidas, y en la Patagonia chilena.

“S. eubayanus muestra una amplia distribución mundial y consta de dos poblaciones principales que se estructuran en seis subpoblaciones, cuatro de estas se encuentran exclusivamente en la región patagónica de América del Sur; una se encuentra predominantemente en la Patagonia y escasamente en Oceanía y América del Norte; y la última es específica de la ecozona holártica -la zona ecográfica del hemisferio Norte-”, detallan los investigadores en la publicación.

“Una de las incógnitas más grandes es porque esta levadura no está presente en Europa, lugar donde se originó la Cerveza Lager, por lo que el trabajo permitió determinar qué regiones del mundo serían climáticamente aptas para la levadura. Los modelos biogeográficos desarrollados indican que hay varias regiones en Europa que serían adecuadas climáticamente para que S. eubayanus esté presente, que no la encontremos puede explicarse de varias formas: que su hábitat específico (especie de árbol al que está asociado) no exista más, o que haya sido reemplazada en su hábitat por otras levaduras semejantes, o que nunca estuvo, por ejemplo”, explica por su parte Libkind.

Se refuerza aún más la teoría de que S. eubayanus se trata de una especie autóctona debido a la mayor abundancia y diversidad genética que presenta en la Patagonia noroccidental, en Bariloche y alrededores, explica el investigador, “donde algunas locaciones contienen más diversidad que en el resto del mundo en su conjunto. La estructura genética y distribución poblacional de S. eubayanus en la Patagonia Argentina se puede explicar mirando la de los árboles donde habita -especies endémicas de Nothofagus-. Eso no se ha visto en ningún otro lugar del mundo, no solo con esta levadura sino con ningún microorganismo; esta levadura es nativa”.

Otra arista del presente trabajo, surge de la posibilidad de trazar un paralelismo entre la evolución humana, explica el científico, ya que “la historia de migraciones, hibridaciones e intercambios genéticos de S. eubayanus, que le permitió colonizar nuevos territorios desde Patagonia, se pueden relacionar con la evolución de la especie humana donde también las introgresiones genéticas con especies ancestrales fueron fundamentales para la obtención de características adaptativas que les permitieron salir de África y colonizar el resto del mundo”.  “La exploración de levaduras salvajes puede darte muchas sorpresas, y sin duda que el estudio de un microorganismo, en particular una levadura argentina, contribuya aunque sea un poco a entender la evolución humana es inédito”, agrega.

El trabajo también concluye que estos recursos biológicos estudiados se pueden utilizar tanto para desarrollar nuevas aplicaciones de elaboración de cerveza como para iluminar nuestra comprensión de la dinámica de la evolución de los microorganismos en la naturaleza.

Estas conclusiones también se abordaron, en un reciente trabajo de revisión liderado por Libkind, en una publicación en la revista FEMS Yeast Research, en la que se resalta la importancia de estudiar a nivel genómico levaduras menos convencionales, y dan ejemplos de las potenciales aplicaciones biotecnológicas. “Existen miles de levaduras ahí afuera, y solo se estudian en profundidad unas pocas, como grupo siempre nos dedicamos a levaduras no convencionales, a pesar más de que es más dificultoso en términos de tiempo energía y recursos pero cuando se encuentran levaduras como EUBY®, todo vale la pena”.

Referencia bibliográfica:
  • Langdon QK, Peris D, Eizaguirre JI, Opulente DA, Buh KV, Sylvester K, et al. (2020) Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLoS Genet 16(4): e1008680. https://doi.org/10.1371/journal.pgen.1008680
  • D Libkind, D Peris, F A Cubillos, J L Steenwyk, D A Opulente, Q K Langdon, A Rokas, C T Hittinger, Into the wild: new yeast genomes from natural environments and new tools for their analysis, FEMS Yeast Research, Volume 20, Issue 2, March 2020, foaa008, https://doi.org/10.1093/femsyr/foaa008




Saccharomyces cerevisiae y otras levaduras asociadas con cervezas indígenas (chicha) de Ecuador

Fernanda Barbosa Pilóa, Enrique Javier Carvajal-Barrigab, Maria Cristina Guamán-Burneob, Patricia Portero-Barahonab, Arthur Matoso Morato Diasa, Larissa Falabella Daher de Freitasa, Fátima de Cássia Oliveira Gomesc, Carlos Augusto Rosaa,
la Universidad Federal de Minas Gerais, Instituto de Ciencias Biológicas, Departamento de Microbiología, Belo Horizonte, MG, Brasil
b Pontificia Universidad Católica del Ecuador, Escuela de Ciencias Biológicas, Centro Neotropical para Investigación de la Biomasa, Colección de Levaduras Quito Católica (CLQCA), Quito, Ecuador
c Centro Federal de Educación Tecnológica de Minas Gerais, Departamento de Química, Belo Horizonte, MG, Brasil

La chicha , un tipo de cerveza elaborada principalmente con maíz o mandioca, es una bebida fermentada tradicional de la región andina. Solo se han realizado unos pocos estudios sobre levaduras asociadas con la fermentación de chicha , y se desconoce la diversidad de especies que se produce durante la producción de esta bebida. El objetivo de este estudio fue determinar la biodiversidad de levaduras en chicha , y caracterizar las Saccharomyces cerevisiae poblaciones asociadas con la producción de chicha de jora , siete granos chicha , chicha de yuca , y la chicha de morocho en el Ecuador. La diversidad molecular de S. cerevisiaelas poblaciones se determinaron por polimorfismo de restricción de perfiles mitocondriales. Las bebidas se caracterizaron en función de sus parámetros fisicoquímicos. Se identificaron 26 especies, y las especies más prevalentes fueron S. cerevisiae y Torulaspora delbrueckii . Otras especies de levadura se aislaron a bajas frecuencias. Entre 121 aislamientos de S. cerevisiae , se identificaron 68 perfiles moleculares de ADNmt diferentes. Estos resultados mostraron que las chichas son fermentadas por una gran cantidad de cepas diferentes de S. cerevisiae . Algunas otras especies aportaron una contribución menor al proceso de fermentación. La chicha presentó parámetros fisicoquímicos generalmente similares a los observados para otras bebidas fermentadas tradicionales, y puede considerarse como una bebida fermentada ácida.
Introducción

La chicha o la cerveza de maíz podrían considerarse la bebida más antigua de América Latina. El nombre chicha posiblemente se origina de la palabra chichab , del idioma original hablado en el territorio actual de Panamá, que significa maíz. Otras teorías sugieren que el nombre se deriva de la palabra Chibcha , una civilización que pobló Colombia y Panamá, o relaciona la palabra chicha con Chichas , una etnia presente en el sur de Bolivia antes del establecimiento de los incas. 1

La chicha es una bebida clara, amarilla y espumosa presente en la región andina y en las regiones bajas de Ecuador, Perú, Bolivia, Colombia, Brasil y Argentina. 2 Esta bebida tradicional se prepara principalmente a partir de maíz, pero actualmente, el nombre se considera genérico y se refiere a una variedad de bebidas, fermentadas o no, preparadas a partir de otros materiales, como la yuca, los frijoles (como el arroz, la avena y la quinua). ) y frutas (como plátanos). En Ecuador, los primeros informes de producción de chicha se remontan al año 200 a. C., antes del establecimiento de los incas en la región. 1 Esta bebida era de gran importancia en las culturas indígenas tradicionales, especialmente en la cultura inca, en la que también estaba vinculada a las ceremonias festivas. 3

En Ecuador, como en el resto de la región andina, la chicha de maíz más común es la chicha de jora ( Fig. 1 ). Esta chicha se prepara a partir del grano de maíz amarillo ( maíz amarillo), que es malteada (germinada y seca). Para la preparación de la malta, los granos se dejan en agua durante un día. Este paso es necesario para lograr la humedad óptima del grano para la germinación. Posteriormente, el agua se drena y el maíz se coloca en cestas de parásitos para germinar durante un período de 13 días. Una vez germinado, el maíz se coloca en esteras de paja o lonas de plástico bajo el sol durante 2 días para que se seque por completo, lo que detiene la actividad enzimática dentro del grano. Después del secado, los granos se muelen y la harina obtenida se usa para la preparación de chicha . Para esto, la harina de jora se agrega al agua fría y luego esta mezcla se transfiere a recipientes con agua caliente y se hierve durante aproximadamente 20min. Después de hervir, la mezcla se cuela y luego se coloca en un recipiente para fermentar. Los recipientes de arcilla, anteriormente utilizados para hervir y fermentar, han sido reemplazados por ollas de aluminio y recipientes de plástico, respectivamente. El grano gastado obtenido después de la filtración se denomina afrecho y sirve como alimento para los animales. Los vasos de fermentación suelen estar abiertos. Por lo general, después de dos días de fermentación espontánea por microorganismos indígenas, la bebida está lista para el consumo. Algunos productores suelen hervir la harina de jora con otros ingredientes, incluida la panela (azúcar morena en trozos sólidos). Otros hacen una mezcla de panela y hierbas y luego agregan esta mezcla a la joraharina y agua. Todavía hay aquellos que agregan trozos de fruta y panela a la bebida, después del filtrado.

Figura 1; Chicha de jora (A); Morocho (maíz blanco) (B); Chicha de morocho lista para beber (C); chicha de siete granos (D); mandioca para la producción de chicha de yuca (E); Chicha de yuca lista para beber después de la adición de semillas de la palma Ungurahua (F).

Otras bebidas de chicha producidas en Ecuador incluyen chicha de morocho , hecha con maíz blanco, y chicha producida con siete variedades de maíz, incluyendo jora , maíz amarillo (maíz amarillo), maíz blanco (maíz blanco), maíz negro (maíz negro), chulpi ( maíz chulpi ), morocho ( maíz morocho ) y cangil (maíz de palomitas de maíz). La chicha de siete granos se produce en la ciudad de Otavalo, en el norte de Ecuador, y es una bebida muy famosa y apreciada en todo el país. La yuca ( yuca ,Manihot esculenta ) es también una materia prima importante para la producción de chicha . 4 Esta chicha es producida por la población indígena y mestiza en la región amazónica de Ecuador.

Se han realizado pocos estudios para identificar las especies de levadura en las chichas . Vallejo y col. 5 Saccharomyces cerevisiae aisladas como la única especie de levadura al final de la fermentación de 10 muestras de chicha de jora recolectadas de 10 "chicherías" tradicionales familiares diferentes en la región de Cusco en Perú. Estos autores sugirieron que esta especie era la principal responsable de la fermentación alcohólica en estas muestras de chicha . Rodríguez y cols. 6 sugieren que Saccharomyces uvarum es responsable de la fermentación tradicional de la chicha de manzana elaborada por las comunidades aborígenes de la Patagonia andina (Argentina y Chile). Mendonza y col.7 mostraron mediante secuenciación de alto rendimiento y enfoques dependientes del cultivo que S. cerevisiae era la especie dominante en una chicha argentina a base de maíz. Otros trabajos sobrefermentación de chicha vincularon poblaciones bacterianas a este proceso. 4,8,9 A pesar del trabajo de Vallejo et al. 5 y Mendonza et al. 7 ,la biodiversidad de levadura asociada con laproducción demaíz y yuca chicha es casi desconocida. En este trabajo, las chichas se venden a granel ( Fig. 1), producidos con diferentes sustratos y diferentes tiempos de fermentación, fueron recolectados en mercados, bares, restaurantes y en pueblos de Ecuador. El objetivo fue determinar la riqueza de especies de levadura y caracterizar las poblaciones de S. cerevisiae asociadas con la producción de esta bebida mediante análisis de ADN mitocondrial de polimorfismo de restricción (ADNmt). Además, se determinaron los parámetros fisicoquímicos de las bebidas.

Materiales y métodos
Muestreo

Cuarenta y dos muestras de chicha se recolectaron de agosto a octubre de 2010 y de abril a septiembre de 2012 en dos regiones de Ecuador: la región amazónica, dentro del Parque Nacional Yasuní ( Provincia de Orellana ) y la región andina, en las provincias de Pichincha , Imbabura y chimborazo . Las muestras incluyeron dos chichas de yuca , 34 chichas de jora , tres de siete grano chichas , y dos chichas de morocho . En estas muestras, la fermentación se consideró terminada por los productores, y la bebida estaba lista para beber. Una muestra de chicha de jorase muestreó durante tiempos de fermentación sucesivos (0–5 días). Las chichas fueron recolectadas en frascos estériles de 100mL, transportado al laboratorio en hielo y procesado el mismo día.

Aislamiento e identificación de levadura

Alícuotas de 25ml de cada chicha se agregaron a 225ml de agua de peptona estéril al 0,1%. Para aislamiento de levadura, 0.1ml de diluciones decimales apropiadas, por triplicado, se extendieron sobre extracto de levadura-extracto de malta (YMA: 1% de glucosa, 0.5% de peptona, 0.3% de extracto de malta, 0.3% de extracto de levadura, 2% de agar y 0.02% de cloranfenicol) y lisina ( 1.17% YCB, 0.056% lisina, 2% agar y 0.02% cloranfenicol) agars. El YMA se utilizó para el aislamiento de levaduras Saccharomyces y levaduras no Saccharomyces, mientras que el agar lisina se utilizó para el aislamiento de levaduras no Saccharomyces . Las placas se incubaron a 25ºC.° C durante 5 días y la densidad de cada morfotipo de levadura diferente se expresó como la media de cada morfotipo en cada muestra en unidades formadoras de colonias (ufc / ml). Colonias representativas de cada morfotipo de levadura diferente de ambos medios de cultivo se purificaron en placas YMA y se conservaron a -80ºC.° C o en nitrógeno líquido para su posterior identificación.

Los aislados de levadura se caracterizaron morfológica y fisiológicamente según Kurtzman et al. 10 Los aislamientos con características morfológicas y fisiológicas idénticas se agruparon y se sometieron a PCR usando las secuencias centrales del cebador (GTG) 5 según lo descrito por Gomes et al. 11 Los aislamientos con patrones de bandas de ADN idénticos se agruparon y tentativamente se consideraron la misma especie. Al menos el 50% de los aislados de levadura de cada grupo molecular se identificaron por secuenciación. La identificación de especies se realizó mediante análisis de secuencia de la región ITS-5.8S y los dominios variables D1 / D2 de la subunidad grande del gen de ARNr como se describió anteriormente. 12-16La secuenciación se realizó directamente a partir de productos de PCR purificados utilizando un sistema de secuenciación automatizado ABI3130 (Life Technologies, EE. UU.). Para la identificación de especies de levadura, las secuencias obtenidas se compararon con las incluidas en la base de datos GenBank utilizando la Herramienta de búsqueda de alineación local básica (BLAST en http://www.ncbi.nlm.nih.gov ).

Polimorfismo de restricción del ADN mitocondrial

La extracción de ADNmt de 121 aislamientos de S. cerevisiae se realizó de acuerdo con la metodología descrita por Querol y Barrio 17 y modificada por Foschino et al. 18 El ADNmt se resuspendió en 25l de TE y se almacena a -20° C. Para la digestión, una mezcla que contiene 10 × tampón (Invitrogen, EE. UU.), 1μL de ARNasa A (Invitrogen, EE. UU.), 1μL de Hinf I (Invitrogen, EE. UU.) y 10μL de ADN (aproximadamente 1500ng) fue utilizado. El volumen se completó con agua desionizada hasta 20μL. Los tubos se incubaron luego a 37ºC.° C para 6h. Los fragmentos de restricción de ADNmt se separaron por electroforesis en un gel de agarosa al 1,5% (Pronadisa, España) en tampón TBE a 80ºC.V para 2h. Los geles se tiñeron con una solución de GelRed (Biotium, EE. UU.) Y se visualizaron y fotografiaron bajo luz ultravioleta (UV).

Análisis fisicoquímicos

Se determinaron los parámetros de pH, azúcares reductores totales y contenido de etanol. La determinación de azúcares reductores totales se realizó mediante la metodología del ácido 3,5-dinitrosalicílico. 19 Los contenidos de etanol, glicerol y ácido láctico y acético se determinaron mediante cromatografía líquida de alta resolución (HPLC) en un modelo de cromatógrafo Agilent equipado con una columna Rezex ROA (300×7.8mm).

Resultados
Identificación de levadura

Doscientos cincuenta y cuatro aislados de levadura obtenidos de muestras de chicha fueron identificados como pertenecientes a 26 especies. S. cerevisiae fue la especie más frecuente en 33 de 42 muestras de chicha (41 muestras más una muestra recolectada en diferentes momentos), seguida de Torulaspora delbrueckii que se identificó en 18 muestras. Estas dos especies, así como Pichia kudriavzevii , sake Candida , Dekkera bruxellensis , Pichia fermentans y Saccharomycodes ludwigii fueron aisladas de al menos dos tipos de chicha ( Tabla 1) Las otras especies de levadura estaban presentes en un solo tipo de chicha . Se obtuvieron los más altos recuentos de levadura para chicha de jora y siete granos chicha . S. cerevisiae poblaciones han contribuido a los altos recuentos de levaduras en la mayoría de las muestras de Chichas de jora , siete granos chichas , y chichas de yuca . En la mayoría de las muestras que se detectó esta especie, los recuentos de población fueron superiores a 1.0×107ufc / ml. Sin embargo, esta especie no se aisló de dos muestras de chicha de morocho , y T. delbrueckii y S. ludwigii presentaron los recuentos más altos (7.0×106ufc / ml) en esta bebida.

Tabla 1.

Especies de levadura (ufc / ml y número de muestras positivas para cada especie) aisladas de muestras de chicha recolectadas en Ecuador.

Especies de levadura Chicha de jora (n=35)a Seven-grain chicha (n=3) Chicha de morocho (n=2) Chicha de yuca (n=2) 
Candida californica 4.0×105 (1)b – – – 
Candida humilis 4.7×106 (1) – – – 
Candida sake 1.0×105 (1) – 4.0×105 (1) – 
Candida solani 3.3×105 (1) – – – 
Candida sorboxylosa 3.3×104–4.6×105 (3) – – – 
Candida tropicalis – –  3.3×104 (1) 
Candida vinaria 
3.3×104 (1) – – – 
Candida zeylanoides 8.6×105 (1) – – – 
Dekkera anomala 3.3×105 (1) – – – 
Dekkera bruxellensis 8.0×105–4.0×106 (2) 1.6×105 (1) – – 
blancos Galactomyces 3.3×104–6.6×104 (2) – – – 
Galactomyces geotrichum 2.0×105–1.0×106 (5) – – – 
Hanseniaspora opuntiae – – – 3.3×104 (1) 
Hanseniaspora spp. 3.3×104–5.2×107 (9) – – – 
Kazachstania exigua 3.3×105–5.6×107 (3) – – – 
Kodamaea ohmeri – – – 3.3×104 (1) 
Meyerozyma guilliermondii 3.33×104 (1) – – – 
Pichia fermentans 1.0×105–1.6×106 (5) – 3.3×105 (1) – 
Pichia kluyveri 6.6×105 (1) – – – 
Pichia kudriavzevii 3.3×105–1.1×107 (2) 2.6×105–6.6×105 (3) – 6.7×104 (1) 
Pichia manshurica – 6.6×104 (1) – – 
Rhodotorula mucilaginosa 3.3×104 (1) – – – 
Saccharomyces cerevisiae 3.3×104–3.8×107 (28) 3.3×104–5.6×107 (3) – 1.5×107–2.1×107 (2) 
Saccharomycodes ludwigii 2.0×105–1.7×106 (2) – 7.0×106 (1) – 
Torulaspora delbrueckii 3.3×104–1.1×107 (14) – 3.3×105–7.0×106 (2) 1.6×105–4.3×105 (2) 
hellenicus Zygoascus 3.3×104 (1) – – – 

a. norte=Número de muestras analizadas.
b. Número de muestras que aisló la especie. Cuando la especie de levadura se aisló en más de dos muestras, los resultados muestran en ufc / ml los recuentos de levadura más bajos y más altos para cada especie.

Se estudió una muestra de chicha de jora durante cinco días de fermentación ( Tabla 2 ). Al comienzo de la fermentación, S. cerevisiae estaba presente en una concentración de 6.6×105ufc / ml, y esta especie permaneció en la bebida hasta el quinto día, momento en que los recuentos fueron de 4,5×106ufc / ml. Otras especies de levadura como T. delbrueckii y Rhodotorula mucilaginosa aparecieron después del tercer día de fermentación.

Tabla 2.

Perfiles de restricción mitocondrial (ADNmt) de las cepas de Saccharomyces cerevisiae aisladas de chicha de jora durante 5 días de fermentación e identificaron especies de levadura en cada momento.

Días de fermentación Especies de levadura / recuentos (ufc / ml) Recuentos poblacionales (ufc / ml) de cada perfil de ADNmt de S. cerevisiae
– – – – – 
Saccharomyces cerevisiae (6.9×1053.3×105 3.3×104 3.3×105 – 
S. cerevisiae (9,9×1046.6×104 3.3×104 – – 
S. cerevisiae (5.3×10 5 ), Torulaspora delbrueckii (3.3×104– 9.9×104 4.3×105 – 
S. cerevisiae (4.5×10 6 ), T. delbrueckii (5.0×10 6 ), Rhodotorula mucilaginosa (3.3×104– – 2.2×106 2.3×106 
Análisis de poblaciones de S. cerevisiae mediante perfiles de ADNmt de restricción.
Los 121 aislamientos de S. cerevisiae estudiados representaban 68 patrones de restricción de ADNmt diferentes. Para la chicha de yuca , se analizaron 11 aislamientos de S. cerevisiae que representan tres perfiles de restricción de ADNmt diferentes en dos muestras estudiadas. Para la chicha de siete granos , se estudiaron 28 aislamientos de S. cerevisiae , que representan 19 perfiles de restricción de ADNmt diferentes en tres muestras estudiadas. En muestras de chicha de jora , se analizaron 82 aislamientos de S. cerevisiae y se encontraron 46 perfiles de restricción de ADNmt ( Tabla 3 ). Se encontraron dos cepas (perfiles de ADNmt 1 y 2) en cuatro muestras diferentes de chicha de jora , pero la mayoríaLas muestras de chicha produjeron un conjunto de cepas con perfiles de restricción de ADNmt únicos que no se producen en otra muestra.

Tabla 3.

Parámetros fisicoquímicos de las muestras de chicha y la aparición de los diferentes perfiles de ADNmt de cepas de Saccharomyces cerevisiae en cada muestra.

Chicha Días de fermentación pH Azúcares reductores totales (g / L) Glicerol (g / L) Ácido láctico (g / l) Etanol (% v / v) Perfiles de ADNmt de las cepas de  S. cerevisiae
yuca
4.15±0.01 a 34.83±4.51 1.40±0.19 4.72±1.10 2.28 33, 35 
3.94±0.00 7.93±0.03 1.34±0.19 4.58±2.44 3.15 33, 34, 35 
jora
3.79±0.01 12.42±0.14 1.12±0.30 1.70±0.95 1.07 36, 37, 38 
3.64±0.02 9.11±0.09 1.27±2.49 2.11±3.36 1.87 41 
3.23±0.03 6.81±0.13 3.35±1.71 4.50±2.18 5.97 57, 58 
3.23±0.01 20.6±0.11 1.99±2.47 1.93±1.82 2.75 59 
3.20±0.01 6.97±0.07 – 2.17±0.76 – 11, 12, 13, 16, 31 
3.89±0.01 6.98±0.14 – – – 1, 2, 17 
3.56±0.02 5.78±0.23 0.96±0.32 2.17±0.74 0.65 
10 3.89±0.01 7.19±0.09 – 2.46±1.27 0.46 19, 20, 21 
11 3.87±0.01 7.12±0.03 – 1.90±0.57 – 4, 1, 22 
12 4.13±0.03 3.40±0.18 – – – – 
13 3.73±0.02 7.26±0.03 ND b DAKOTA DEL NORTE DAKOTA DEL NORTE 1, 5 
14 3.62±0.01 5.84±0.09 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE 24, 25, 26 
15 3.45±0.00 36.24±0.10 2.04±1.65 3.77±2.92 2.76 40 
16 3.30±0.00 10.08±0.03 0.83±0.21 3.79±0.42 1.21 60 
17 3.34±0.02 1.63±0.02 – 2.23±1.23 0.20 10 
18 3.88±0.01 7.17±0.12 – 1.80±1.79 – 1, 17, 22, 23 
19 3.47±0.01 4.77±0.04 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE – 
20 3.55±0.09 34.20±1.87 2.51±2.91 1.94±1.95 2.40 55 
21 3.24±0.01 6.94±0.06 – 2.27±0.06 – 13, 14, 16, 32 
22 3.68±0.00 6.92±0.06 – 1.83±2.00 0.37 5, 18 
23 3.93±0.01 6.64±0.06 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE 2, 4, 6 
24 2.84±0.01 6.93±0.05 1.53±0.58 3.74±0.95 1.51 – 
25 3.49±0.01 6.94±0.03 3.65±0.17 2.91±0.43 3.02 
26 3.05±0.01 6.89±0.04 1.80±0.57 1.59±0.80 1.47 
27 3.37±0.01 1.66±0.19 – 3.03±0.62 – – 
28 3.37±0.01 6.97±0.05 – 1.95±0.77 – 13 
29 3.56±0.02 3.31±0.09 – 1.95±1.64 – – 
30 4.04±0.01 10.91±0.31 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE 7, 27, 28, 29, 30 
31 4.14±0.00 6.56±0.06 – – – – 
32 3.01±0.01 7.91±0.07 – 3.40±0.95 1.71 54, 56, 61 
33 3.20±0.01 2.65±0.06 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE – 
34 2.62±0.00 1.86±0.15 – 3.51±0.28 1.21 15 
35 3.02±0.01 2.06±0.18 2.66±0.42 5.88±1.01 3.02 2, 17 
36 DAKOTA DEL NORTE 3.39±0.00 16.70±0.59 3.38±1.10 3.79±1.09 4.22 2, 39 
siete granos
37 DAKOTA DEL NORTE 3.71±0.03 14.71±0.62 2.59±0.85 6.90±2.11 2.99 42, 43, 44, 45, 46, 47 
38 DAKOTA DEL NORTE 3.30±0.01 7.48±0.21 – – 0.71 62, 63, 64, 65, 66, 67, 68 
39 DAKOTA DEL NORTE 3.31±0.00 2.76±0.07 2.13±1.00 6.66±1.03 1.98 43, 48, 49, 50, 51, 52, 53 
morocho
40 3.79±0.01 9.17±0.10 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE – 
41 3.84±0.02 7.82±0.23 DAKOTA DEL NORTE DAKOTA DEL NORTE DAKOTA DEL NORTE – 

a. Desviación Estándar.
b. DAKOTA DEL NORTE=no determinado.

Se identificaron cuatro perfiles diferentes de ADNmt de S. cerevisiae en chicha de jora estudiada durante los cinco días de fermentación ( Fig. 2 ).

Figura 2: Patrones de restricción de ADN mitocondrial obtenidos de una muestra de chicha de jora en diferentes momentos de fermentación. Columna: 1: 1escalera de ADN kb; 2–7: perfiles encontrados con 1 día de fermentación (2–4: patrón 1; 5: patrón 2; 6–7: patrón 3); 8–10: perfiles encontrados con 2 días de fermentación (8–9: patrón 1; 10: patrón 2); 11-15: perfiles encontrados con 3 días de fermentación (11-13: patrón 2; 14-15: patrón 3); 16-17: perfiles encontrados con 5 días de fermentación (16: patrón 3; 17: patrón 4).
Solo la cepa de S. cerevisiae con perfil de ADNmt 3 se produjo desde el primer hasta el quinto día de fermentación ( Tabla 2 ). Las cepas con los perfiles de ADNmt 2 y 3 mostraron recuentos crecientes en el transcurso de la fermentación. En contraste, la cepa con el perfil de ADNmt 1 disminuyó en número durante el proceso de fermentación, y después de tres días no se detectó.

Análisis fisicoquímicos

El valor de pH más alto fue 4.15, en la muestra 1 después de 24h de fermentación, y el valor más bajo fue de 2.62, en la muestra 35 después de 8 días de fermentación ( Tabla 3 ). El valor más bajo de azúcares reductores totales fue 1.63g / L y el valor más alto fue 36.24g / L, ambos encontrados en muestras de chicha de jora . La mayor cantidad de glicerol fue 3,65g / L, encontrado en chicha de jora . El contenido de ácido láctico osciló entre 1,59 y 6,90.g / l. No se detectó etanol en 10 muestras de chicha . El valor más alto de etanol fue 5,97 (% v / v) en la muestra 5 de chicha de jora después de 24h de fermentación.

Discusión

Nuestros resultados mostraron que en la mayoría de las muestras de chicha estudiadas, S. cerevisiae era la especie predominante, seguida de T. delbrueckii , P. kudriavzevii , C. sake , D. bruxellensis , P. fermentans y S. ludwigii , pero generalmente a niveles mucho más bajos. cuenta. Todas estas especies de levadura pueden contribuir a la calidad sensorial de la bebida. S. cerevisiae también fue la especie dominante en dos producciones, una chicha de maíz preparada por productores locales de las aldeas Maimará y Tumbaya (región de Quebrada de Humahuaca) en el noroeste de Argentina. 7 Sin embargo, parapsilosis de Candiday una especie de Pichia no descrita fueron la segunda y tercera levaduras más abundantes en estas fermentaciones en Argentina. Vallero y col. 5 aislaron solo S. cerevisiae de muestras de chicha de jora en 10 "chicherías" tradicionales en la región de Cusco en Perú. Estos resultados muestran que el proceso de fermentación asociado con la chicha a base de maíz es realizado por S. cerevisiae y otras especies no Saccharomyces que ocurren en frecuencias menores. Las especies no Saccharomyces encontradas en nuestro estudio pueden aislarse de diferentes sustratos en todo el mundo, incluidas las de los procesos de fermentación para la producción de bebidas. 1,5,20–22El origen de las especies no Saccharomyces asociadas con las muestras de chicha estudiadas podría explicarse por los diferentes procesos de fabricación de estas bebidas. La chicha de jora se prepara de diferentes maneras, empleando una amplia variedad de materias primas con ingredientes adicionales como frutas, hierbas, especias, azúcar morena y azúcar. La chicha de siete granos se produce con siete variedades de harina de maíz y chicha de yuca con pocas materias primas, incluida la yuca y la semilla de la palma Ungurahua . Chicha de morocho, a pesar de que también se fabricó a partir de una amplia variedad de ingredientes, se recolectó en restaurantes en La Mariscal, un distrito de Quito (datos no mostrados), donde la bebida se produjo siguiendo las Buenas Prácticas de Manufactura. Algunos ingredientes utilizados en el proceso de fabricación de chicha , como frutas, hierbas y especias, se agregan después de hervir la harina de jora . Según esta información, las poblaciones de levadura podrían originarse a partir de estos ingredientes utilizados en la preparación de bebidas y de otras fuentes, como manipuladores, utensilios y recipientes utilizados durante el proceso de fermentación.

Un gran número de diferentes perfiles de ADNmt de S. cerevisiae se encontraron asociados con el proceso de producción de chicha en nuestro estudio. La aparición de estos diferentes perfiles de ADNmt de S. cerevisiae asociados con bebidas tradicionales está bien documentada. 21,23,24 Además, la aparición de diferentes cepas durante el proceso de fermentación, como se observó en la chicha de jora estudiada durante los cinco días de fermentación, es muy común en la fermentación espontánea durante la producción de bebidas tradicionales. 21,25,26 Como cada perfil de ADNmt representa una cepa genética diferente de S. cerevisiae, estas cepas podrían estar contribuyendo a diferentes propiedades sensoriales de la bebida. La selección de las mejores cepas de S. cerevisiae para la producción de chicha es interesante, y estos estudios podrían basarse en la diversidad de cepas con diferentes perfiles de restricción de ADNmt que ocurren durante el proceso de fermentación.

Los bajos valores de pH de la chicha estudiada podrían estar asociados con el contenido de ácido, específicamente, los ácidos láctico y acético, producidos durante la fermentación. Estos ácidos orgánicos pueden contribuir negativamente a la calidad sensorial de la bebida, ya que pueden producirse sabores desagradables cuando estos ácidos están presentes en grandes cantidades. 23 Los azúcares reductores totales variaron ampliamente, posiblemente debido al muestreo en diferentes tiempos de fermentación y la diversidad de materias primas utilizadas en la chichapreparación. Esta variación podría estar relacionada con la eficiencia de la comunidad microbiana en la utilización de estos azúcares reductores. El glicerol es un alcohol de gran importancia en las bebidas alcohólicas, ya que proporciona un aroma dulce y contribuye a la viscosidad del producto final. La mayor cantidad de glicerol fue 3,65g / L, encontrado en chicha de jora . Es importante tener en cuenta que el glicerol en grandes cantidades no es deseable porque le da un sabor rancio a la bebida. 27

Altay y col. 28 observaron parámetros fisicoquímicos muy similares a los encontrados en este estudio al estudiar el jugo de shalgam , una bebida no alcohólica fermentada producida a partir de la fermentación láctica de la zanahoria negra. Según los autores, el pH de esta bebida estaba entre 3.15 y 4.25 y los principales productos de fermentación obtenidos fueron ácido láctico (de 5.18 a 8.05g / L), ácido acético (0.57–0.83g / L), etanol (0.79–6.41%) y compuestos aromáticos volátiles. Las bajas concentraciones de etanol presentes en algunas muestras y la presencia de ácido láctico hacen posible la fermentación por bacterias del ácido láctico en lugar de la fermentación alcohólica en mayor escala en estas muestras. Con respecto a la boza , una bebida fermentada por levaduras y bacterias de ácido láctico, el pH varió de 3.16 a 4.63 y el contenido de etanol varió de no detectable a 0.39%. Mendoza y col. 7 reportaron una concentración de etanol de alrededor del 1% en las chichas argentinas a base de maíz , resultado similar a las chichas analizadas en nuestro estudio. Por lo tanto, la chichaLas muestras estudiadas presentaron parámetros fisicoquímicos generalmente similares a los observados para otras bebidas fermentadas tradicionales. Finalmente, las chichas ecuatorianas pueden considerarse bebidas fermentadas ácidas, y las especies de levadura asociadas con su proceso de fermentación deberían contribuir al aroma singular y al sabor único de esta bebida.

Conflictos de interés
Los autores declaran no tener conflictos de intereses.

AGRADECIMIENTOS
Este trabajo fue financiado por el Consejo Nacional para el Desarrollo Científico y Tecnológico ( CNPq - Brasil), la Fundación de Apoyo a la Investigación del Estado de Minas Gerais ( FAPEMIG - Brasil), la Coordinación para la Mejora del Personal de Educación Superior ( CAPES - Brasil), y la Secretaría Nacional de Educación Superior, Ciencia, Tecnología e Innovación (Ecuador).

REFERENCIAS

[1]
F.C.O. Gomes, I.C.A. Lacerda, D. Libkind, C. Lopes, E.J. Carvajal, C.A. Rosa
Alimentos y bebidas tradicionales de América del Sur: comunidades microbianas y estrategias de producción.
Fermentación industrial: procesos alimentarios, fuentes de nutrientes y estrategias de producción, págs. 79-114
[2]
KH Steinkraus.
Manual de alimentos fermentados indígenas.
CRC Press, (1995),
[3]
J. Jennings.
La chichera e el patrón: chicha and the energetics of feasting in the prehistoric Andes.
Archeol Pap Am Anthropol Assoc, 14 (2005), págs. 241-259
[4]
A.L. Freire, S. Zapata, J. Mosquera, M.L. Mejia, G. Trueba.
Las bacterias asociadas con la saliva humana son los principales componentes microbianos de las cervezas indígenas ecuatorianas (chicha).
PeerJ, 4 (2016), págs. E1962
[5]
J.A. Vallejo, P. Miranda, J.D. Flores-Félix, et al.
Las levaduras atípicas identificadas como Saccharomyces cerevisiae por MALDI-TOF MS y la secuenciación de genes son los principales responsables de la fermentación de la chicha, una bebida tradicional del Perú.
Syst Appl Microbiol, 36 (2013), págs. 560-564
[6]
ME Rodríguez, L. Pérez-Través, MP Sangorrín, E. Barrio, A. Querol, CA Lopes.
Saccharomyces uvarum es responsable de la fermentación tradicional de la chicha de manzana en la Patagonia.
FEMS Yeast Nada, 17 (2017), pp. 1-11
[7]
L.M. Mendoza, A. Neef, G. Vignolo, C. Belloch.
Diversidad de levaduras durante la fermentación de la chicha andina : una comparación de la secuenciación de alto rendimiento y los enfoques dependientes de la cultura.
Food Microbiol, 67 (2017), págs. 1-10
[8]
P. Elizaquível, A. Pérez-Cataluña, A. Yépez, et al.
Enfoques de pirosecuenciación versus cultivos dependientes del cultivo para analizar las bacterias del ácido láctico asociadas a la chicha , una bebida fermentada tradicional a base de maíz del noroeste de Argentina.
Int J Food Microbiol, 198 (2015), págs. 9-18
[9]
C. Puerari, K.T. Magalhães-Guedes, R.F. Schwan.
Caracterización fisicoquímica y microbiológica de la chicha, una bebida fermentada a base de arroz producida por amerindios brasileños de Umutina.
Food Microbiol, 46 (2015), págs. 210-217
[10]
CP Kurtzman, JW Fell, T. Boekhout.
Las levaduras: un estudio taxonómico.
Elsevier, (2011),
[11]
FC Gomes, SV Safar, AR Marcas, et al .
La diversidad y las actividades enzimáticas extracelulares de levaduras aisladas de tanques de agua de Vriesea minarum , una especie de bromelia en peligro de extinción en Brasil, y la descripción de Occultifur brasiliensis fa, sp. nov.
Antonie van Leeuwenhoek, 107 (2015), págs. 597-611
[12]
TJ White, T. Bruns, S. Lee, J. Taylor.
Amplificación y secuenciación directa de genes de ARNm fúngicos para filogenética.
Academic Press, (1990),
[13]
K. O'Donnell.
Fusarium y sus parientes cercanos.
El holomorfo fúngico: especiación mitótica, meiótica y pleomórfica en la sistemática fúngica, pp. 225-233
[14]
CP Kurtzman, CJ Robnett.
Identificación y filogenia de levaduras ascomicetas a partir del análisis de secuencias parciales de ADN ribosómico de subunidad nuclear grande (26S).
Antonie van Leeuwenhoek, 73 (1998), págs. 331-371
[15]
MAMÁ. Lachance, JM Bowles, WT Starmer, JSF Barker.
Kodamaea kakaduensis y Candida tolerans , dos nuevas especies de levadura ascomiceto de flores de hibisco australiano.
Can J Microbiol, 45 (1999), págs. 172-177
[16]
LH Rosa, ABM Vaz, RB Caligiorne, S. Campolina, CA Rosa.
Hongos endofíticos asociados con la hierba antártica Deschampsia antarctica Desv. (Poaceae)
Polar Biol, 32 (2009), págs. 161-167
[17]
A. Querol, E. Barrio.
Un método rápido y simple para la preparación de ADN mitocondrial de levadura.
Nucleic Acids Res, 18 (1990), págs. 1657
[18]
R. Foschino, S. Gallina, C. Andrighetto, L. Rossetti, A. Galli.
Comparación de métodos culturales para la identificación e investigación molecular de levaduras de masa madre para productos horneados dulces italianos.
FEMS Yeast Nada, 4 (2004), pp. 609-618
[19]
GL Miller.
Uso de reactivo de ácido dinitrosalicílico para la determinación de la reducción de azúcar.
Anal Chem, 31 (1959), págs. 426-428
[20]
S. Sefa-Dedeh, AI Sanni, G. Tetteh, E. Sakyi-Dawson.
Levaduras en la elaboración tradicional de pito en Ghana.
World J Microbiol Biotechnol, 15 (1999), págs. 593-597
[21]
F. Badotti, C. Beloch, CA Rosa, E. Barrio, A. Querol.
Caracterización fisiológica y molecular de cepas de Saccharomyces cerevisiae cachaça aisladas de diferentes regiones geográficas de Brasil.
World J Microbiol Biotechnol, 26 (2010), págs. 579-587
[22]
A. Escalante, D.R.L. Soto, J.E.V. Gutiérrez, M. Giles-Gómez, F. Bolívar, A. López-Munguía.
Pulque , una bebida fermentada alcohólica tradicional mexicana: aspectos históricos, microbiológicos y técnicos.
Front Microbiol, 7 (2016), págs. 1026
[23]
A. Querol, E. Barrio, D. Ramón.
Dinámica poblacional de cepas naturales de Saccharomyces durante la fermentación del vino.
Int J Food Microbiol, 21 (1994), págs. 315-323
[24]
P. Romano, A. Capece, L. Jespersen.
Diversidad taxonómica y ecológica de levaduras de alimentos y bebidas.
Levaduras en alimentos y bebidas, pp. 13-53
[25]
K. Jeyaram, JP Tamang, A. Capece, P. Romano.
Marcadores geográficos para cepas de Saccharomyces cerevisiae con orígenes tecnológicos similares domesticados para la producción de bebidas fermentadas étnicas a base de arroz en el noreste de la India.
Antonie van Leeuwenhoek, 100 (2011), págs. 569-578
[26]
JB Paez-Lerma, A. Arias-Garcia, OM Rutiaga-Quinones, E. Barrio, NO Soto-Cruz.
Levaduras aisladas de la fermentación alcohólica de Agave duranguensis durante la producción de mezcal.
Food Biotechnol, 27 (2013), págs. 342-356
[27]
F. Remize, JL Roustan, JM Sablayrolles, P. Barre, S. Dequin.
La sobreproducción de glicerol por cepas de levadura de vino de Saccharomyces cerevisiae modificadas conduce a cambios sustanciales en la formación de subproductos y a una estimulación de la velocidad de fermentación en la fase estacionaria.
Appl Environ Microbiol, 65 (1999), págs. 143-149
[28]
F. Altay, F. Karbancıoglu-Güler, C. Daskaya-Dikmen, D. Heperkan.
Una revisión sobre las bebidas no alcohólicas fermentadas tradicionales turcas: microbiota, proceso de fermentación y características de calidad.
Int J Food Microbiol, 167 (2013), págs. 44-56
Copyright © 2018. Sociedad Brasileña de Microbiología




Etiquetas Tematicas

@CervezalBlog (31) AB InBev (1) ACERCA DE... (1) ACHT (12) Adicion de Especias (6) Adicion de Frutas (6) Adicion de Lupulos (28) Aditivos (14) Adjuntos (30) Adriana Paonessa (1) Affen (1) Africa (11) Albania (2) Alcalinidad (2) Aldona Udriene (4) Alemania (77) Alewife o Brewster - ¿Brujas? (8) Aloja (11) Amilasas (14) Amstel (1) Anchor Steam Beer (6) Andes Origen (8) Angel Share (1) Angela y Georg Berg (1) Anheuser-Busch (2) Antarctica (1) Antares (4) Anton Dreher (1) Anton van Leeuwenhoek (1) Antonella Sotera (1) Antonio Mastroianni - BarbaRoja (1) Anwandter (6) Aportes de la gente (65) Argentina (659) Armenia (8) Aro Rojo (4) Arte y Publicidad (83) Asia (2) Aspergillus oryzae (6) AstorBirra (7) Atenuacion (4) Australia (7) Austria (7) Auto-Sifon (1) Azucar Invertido (2) Barm (4) Barrido de CO2 (1) Barriles-Barricas de Madera (4) Bebida No Fermentada (5) Bebidas Carcelarias (3) Belgica (37) Bieckert (10) Bielorusia (10) Biotransformación (5) Birrapedia (11) BJCP (3) Blest (11) Bolivia (17) Bors (5) Bosnia-Herzegovina (2) Botellas de gres (4) Brahma (1) Brasil (48) Brettanomyces (22) Brewers Association (5) Brewgrass Homebrew Supply (30) Brígida Mena (1) Brunnen (1) Bulgaria (2) Butch Krill (2) Calculos (104) Camerun (1) CAMRA (9) Canabis (6) Canada (8) Candy Sugar (6) Carbonatacion (26) carce (1) Carlos Sexauer - Cerveceria Sexauer (3) Carlsberg (13) CCU (59) Cerex (2) Cervecería Argentina (6) Cervecería La Posada del Taique (1) Cerveceria Neumeyer (1) Cerveceria Rothenburger (1) Cerveceria Schlau (4) Cerveceria Strasser (1) Cerveceria Vyatich (1) Cerveceria Weiss & Michatt (1) Cerveceros Artesanales de Villa General Belgrano (5) Cerveja Facil (4) Cervesaurio Cerveza Artesanal (1) Cerveza Abdij Deleuze (14) Cerveza Artesanal Colomb's (5) Cerveza Artesanal El Bolsón (4) Cerveza Cruda (37) Cerveza Ebner (1) Cerveza Raiz - Root Beer (2) Cerveza Santa Fe (7) Cerveza y Sociedad (11) Cervezapedia (1) Cervezas de Pergamino (7) Charlie Papazian (18) Chicha (125) Chile (167) Chilebruers (4) China (15) Chipre (2) Chopp Cassaro (1) Chuico - Damajuana (2) Ciudad del Vaticano (1) Clarificantes (10) Cold Steeping - Cold Mash (4) Colombia (27) Color de la Cerveza (7) Colorado (2) Comarca Andina (2) CondorLAB (5) Connor's (1) Coopers (1) Corona Extra (4) Costa Rica (4) Crabtree (5) Croacia (1) CRUDO Clases de Cocina (3) Cruzcampo (2) Cuba (30) Curazao (1) Daniel Schavelzon (5) Daniela Reina (1) Danstar (1) De Libros... (75) Decoccion (6) Defectos (27) Degustacion-Cata (4) Destilaciones (75) Diacetilo (13) Diageo (1) Diccionario (2) Diego Felipe Bruno (1) Diego Libkind (34) Dinamarca (30) Dinant (1) Dioses - Diosas - Duendes y Hadas (30) DIY Homebrewers (1) Doble Malta (2) Dogfish head (18) Ecuador (15) Eduardo Deleuze (18) Eficiencia (1) Egipto (26) El Salvador (3) Envases (12) Enzimas (16) Equipos (38) Escandinavia (9) Escocia (12) Eslovaquia (7) Eslovenia (2) España (119) Espuma (6) Estados Unidos (211) Esteres y Fenoles (2) Estilos (78) Estonia (14) Estrella de 6 puntas (3) Estrella Galicia (4) Etiopia (4) Euby® (1) Extractos de Lupulo (CO2 - ISO - Tetra) (3) fer (1) ferment (1) Fermentacion en general (16) Fermentacion y Madurado - Cerveza (29) Fermentaciones Varias (406) Fermentar Azucar (5) Fermentis (3) Filipinas (2) Filtrado (3) Finlandia (40) Foeder (5) Fotoxidacion (5) Francia (15) Free Beer (14) Fritz Maytag (3) Gabriel Sedlmayer (1) Gabriel Vivanco (3) Game Of Brews (7) Garrett Oliver (3) Gelatinizacion (13) George Hodgson (4) Georgia (4) Gerard Mir Oliveras (3) Ghana (2) Giga Yeast (1) Gingerbeer (7) Gorila (1) Gotland (4) Grados Brix (2) Grecia (27) Gruit (16) Guadalupe (1) Guatemala (4) Guia Cervezal (219) Guillermo Ysusi (1) Guinness (11) Gushing (2) Gypsy - Fantasma (3) H2OPS - Paul Tucker (1) Haiti (1) Hard Seltzer (3) Hartog Elion (2) Heady Topper (3) Heineken (18) Hernan Castellani (1) Hidromieles (43) Hildegarda de Bingen (8) Hillbilly/Redneck Wine - Vino de Frutas (67) Honduras (14) Hong Kong (2) Hongos y Bacterias (4) Hop Creep (1) Hop Water - Agua de Lúpulo (1) Huevos de Concreto-Hormigon (2) Hungría (1) IBU's (11) Imperial (10) Imperial Yeast (1) Inaf-Laiken - Sergio Velez (12) India (8) Interbrew (1) Interlaken (1) Irak (13) Iran (4) Irlanda (16) Isenbeck (6) Islandia (2) Islas Cook (1) Israel (12) Italia (22) Japon (21) Javier Carvajal (3) JC Jacobson (1) Jereme Zimmerman (2) Jodoco Ricke (3) Jordania - Cisjordania (1) Jose Paulo Sampaio (11) Josef Groll (1) Josef Sepp Neuber (1) Juan Carlos Bahlaj (4) Judit Cartex (3) Juegos (3) Juguetes Perdidos (23) Julio Silva (1) Katie Williamson (5) Kazajistán (1) Kbac-Kvass (52) Kefir (Bulgaros-Pajarito) (6) Kefires (22) Kettle-Sour (10) Kim Sturdavant (1) Kirguistán (1) Kombucha (1) Korea (2) korea del Norte (2) Krausening (1) Kristoffer Krogerus (6) Kroᥒomᥱthᥱr (2) Krueger's Beer (5) Kunstmann (6) Kvasar (3) Kveik (17) La Bru (3) La cerveza de mi País 2021 (5) La Maquina de Cerveza Monkey Beer (1) La Pinta De La Paz y La Pinta Desleal (6) Laos (2) Lars Marius Garshol (38) Lavado (14) Letonia (13) Levadura de Pan (67) Levadura Kahm (4) Levaduras (175) Ley de pureza de 1516 - Reinheitsgebot (3) Libano (1) Líbano (1) Licores / Aperitivos / Vinos / Blends / Ponches (296) Limache-CCU (28) Lindenberg (3) Liso (5) Lituania (31) Logia Cervecera (3) Los Chicos (5) Lotte Vinge (2) Low Cost - Marca Blanca (6) Ludwig Narziss (1) Luis Cuellar (12) Luis Di Motta (5) Lupulos (57) Lupulos Argentina (6) Macedonia (2) Macerado (60) Madera (2) Mahina (2) Mak Bier (1) Maltas (46) Maltodextrinas (2) Mapuche (12) Marcel Besnard (1) Marcelo Cerdan (4) Marcelo Scotta (10) Maria Rosa Giraudo (4) Mariano Balbarrey (1) mart (1) Martinica (1) Martyn Cornell (7) Mary Anne Gruber (1) Mash Out (1) Matias Jurisich (1) Medir Densidad (4) MENÚ GENERAL (1) Merryn & Graham Dineley (1) Mesta Nostra (7) Método BLUMBEŸ (3) Mexico (84) Michael Jackson (21) Michael Peter Fritz Kempe (1) Michael Tonsmeire - TheMadFermentationist (5) Mika Laitinen (12) Misceláneos (91) Mistelas (9) Mongolia (1) Monica Huerta Alpaca (2) Montenegro (2) Moonshine (2) Moretti (1) Mujeres (117) Muntons (1) Natalí Ledesma (2) Nepal (1) Nick Bower (2) Nigeria (2) No-Chill - Sin Enfriamiento (3) Nodulos Tibicos (20) Noruega (43) Notas (1747) Nucleated Beer Glass (3) Nueva Zelanda (2) NuevoOrigen (9) Nutrientes (2) Olga Hansen (2) Omega Yeast (1) Omnipollo (12) Ona Giriuniene (4) Orestes Esteves (3) Osmosis Inversa (1) Otras Recetas (113) Otro Mundo (1) Otto Bemberg (4) Otto Tipp (2) Otto y Emma Koehler (1) Oxidacion (2) Oxigenacion (2) Pablo Fazio (2) Paises Bajos (37) Palestina (4) Palos Magicos - Anillos de Levadura (8) Panamá (2) Parada de Sacarificacion (2) Parada Proteica (3) Paraguay (4) Parti-Gyle (10) Pascal Baudar (21) Paso a Paso (32) Pasteurizado (4) Patagonia (27) Paul Ehrlich (1) Pausas o Paradas (8) Pearl Brewery (1) Pediococcus (2) Pedro Biehrman (14) Pellicle (3) Peñón del Aguila Cerveza (2) Perfiles de Agua Objetivo (5) Perinola Cervezal (1) Peroni (1) Peru (56) PH y Manejo del Agua (29) Piedras Calientes (5) Pierre Celis (3) Pivovary Staropramen (1) Placas (416) Playmobil (2) Playmoguardian (1) Poder diastásico (7) Polonia (14) Poly-gyle (2) Porter/Stout (8) Puerto Rico (2) Quemadores (1) Quilmes (58) Quilmes y Peron el Caso Bemberg (3) Rabieta (1) Ralph Harwood (1) Rastal (2) Raúl Falcón (1) Raw Ale (37) Real Ale (11) Receta Cerveza (449) Receta Cerveza Levadura de Pan (14) Receta Cerveza Marihuana / Cannabis (1) Receta de Licores-mistelas y ponches (82) Receta Gruit (2) Receta Hard Seltzer (3) Receta Hop Water (1) Recetas (868) Recetas Carcelarias (6) Recetas Chicha (57) Recetas de Aloja (8) Recetas de cerveza de la Casa Blanca (2) Recetas de comidas vinculadas (40) Recetas de la gente (236) Recetas Destilados (12) Recetas Hidromieles (36) Recetas Vinos (77) Reino Unido (144) Reiterated Mash (1) Renato “Tato” Giovannoni (1) Rendimiento (4) República Checa (10) República de El Bolsón (2) República Dominicana (3) Ricardo “Semilla” Aftyka (19) Ricardo Andres Satulovsky (8) Ricardo Muhape (1) Richard Preiss (1) Roel Mulder (25) Royal Guard (1) Rudi Loistl (1) Rumania (8) Rusia (117) SABMiller (3) Saccharomyces bayanus (2) Saccharomyces eubayanus (32) Sales de Burton (1) Samogon Lab (1) SAMoVAR TV (1) Samuel Adams (8) Samuel Smith’s (1) San Patricio - Saint Patrick Day (3) Sanitizado (10) Schneider (5) Sebastian Oddone (124) Sensorytrip (12) Serbia (2) Servicio y Cristaleria (36) Servomyces (3) Session Beer (2) Setomaa (1) Shower Beers (2) Sidra (10) Sierra Nevada (1) Sin Alcohol (8) Sin Gluten (44) Singapur (1) Siria (4) Socialismo y Cerveza (6) SOFTWARE (8) Sol Cravello (1) Sour (20) Spiegelau (7) St. Wendeler. (3) Stella Artois (1) Steve Huxley (4) Sudafrica (6) Suecia (22) Suiza (2) Sumerios (11) Svetlana Vasilyevna (1) Tailandia (1) Tanzania (1) Tayikistán (1) Termovinificacion (1) Tetrahops (3) The Alchemist (4) The American Can Company - ACCO (4) The Beer Hunter (11) Tibet (1) Tired Hands Brewing Company (2) Tres Jotas Beer Club (9) Turbidez en frío o Chill Haze (4) Turkmenistán (1) Turquia (11) Ucrania (9) Un1ca (2) URSS (24) Uruguay (35) Uzbekistán (1) Venezuela (10) Vicky Di Paula (1) Videos (48) Viejo Munich (1) Vores Øl (2) Walter Vogrig (2) Warsteiner (5) Wayfinder Beer (Kevin Davey) (1) WhiteLabs (1) Willem van Waesberghe (4) William Shakespeare (1) Zero IBU IPA (2) Zimbabwe (2) Zoigl (7) Zoya Nikonova (1)

Síguenos en Facebook

Síguenos en Facebook
Te esperamos

Entradas populares

Destacados

Chicha Tradicional de Maiz y Cerveza

Jack Hornady Chicha es el nombre que reciben diversas variedades de bebidas alcohólicas derivadas principalmente de la fermentación no d...